PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Raw gas dehydration on supersonic swirling separator

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Odwadnianie gazu naturalnego w naddźwiękowym oddzielaczu mieszającym
Języki publikacji
EN
Abstrakty
EN
The supersonic separation is a promising new technology. The main advantage of the method is the small size of the supersonic nozzle. A program was designed to select the nozzle combination for an interval of inlet volumetric flow. Industrial application of supersonic separation was tested on a production facility offshore Malaysia.
PL
Oddzielanie naddźwiękowe jest nową, obiecującą technologią. Główną zaletą tej metody jest niewielki rozmiar dyszy naddźwiękowej. Opracowano specjalny program w celu dobrania odpowiedniej dyszy do przedziału objętości przepływu w otworze wlotowym. Zastosowanie oddzielania naddźwiękowego na potrzeby przemysłu było testowane w zakładzie produkcyjnym znajdującym się w strefie przybrzeżnej Malezji.
Rocznik
Strony
75--85
Opis fizyczny
Bibliogr. 19 poz., tab., rys., wz., wykr.
Twórcy
autor
  • Department of Process Engineering, Czech Technical University in Prague
autor
  • Department of Process Engineering, Czech Technical University in Prague
autor
  • Department of Process Engineering, Czech Technical University in Prague
Bibliografia
  • [1] Gas infrastructure Europe (2011) Map Dataset in Excel-format Storage map. Available: http://www.gie.eu/maps_data/storage.html. Accessed 08.03.2011.
  • [2] NET4GAS (2011) Gas quality parameters. Available at: http://extranet.transgas.cz/caloricity_spec.aspx. Accessed 08.03.2011.
  • [3] Gandhidasan P., Al-Farayedhi A., Al-Mubarak A., Dehydration of natural gas using solid desiccants, Energy, 26, 2001, 855-868.
  • [4] Gandhidasan P., Parametric Analysis of Natural Gas Dehydration by Triethylene Glycol Solution, Energy Sources, 25, 2003, 189-201.
  • [5] Qingfen M., Dapeng H. et al., Performance of Inner-core Supersonic Gas Separation Device with Droplet Enlargement Method, Chinese Journal of Chemical Engineering, Department of Mechanical Engineering, Hainan University, Haikou, China 2009.
  • [6] Wen C., Cao X., Zhang J., Wu L., Three-dimensional Numerical Simulation of the Supersonic Swirling Separator, Twentieth International Offshore and Polar Engineering Conference, Beijing, China 2010.
  • [7] Horseman S., Evans D. et al., Underground gas storage. Available: www.bgs.ac.uk/downloads/start.cfm?id=346. Accessed 01.2012.
  • [8] Okimoto F., Brouwer J.M., Supersonic gas conditioning, World Oil, 34, 89-91, 2002.
  • [9] Alfyorov V., Bagirov L. et al., Supersonic nozzle efficiently separates natural gas components, Oil & Gas Journal, TransLang Technologies Ltd., Moscow, Russia 2005.
  • [10] Karimi A., Abdi M.A., Selective dehydration of high-pressure natural gas using supersonic nozzles, Chemical Engineering and Processing, 48, 560–568, 2006.
  • [11] Twister B.V., Twister supersonic separator – Experience. Available: http://twisterbv.com/products-services/twister-supersonic-separator/experience/. Accessed 07.03.2012.
  • [12] Malyshkina M.M., The Structure of Gasdynamic Flow in a Supersonic Separator of Natural Gas, Vol. 46, 1, 69-76, Heat and Mass Transfer and physical Gasdynamics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow, Russia 2008.
  • [13] Jassim E., Abdi M.A. et al., Computational Fluid Dynamics Study for Flow of Natural Gas through High-Pressure Supersonic Nozzles: Part 1. Real Gas Effects and Shockwave, Petroleum Science and Technology, Memorial University of Newfoundland, St. John´s, Canada 2008.
  • [14] Wen C., Cao X. et al., Swirling Effects on the Performance of Supersonic Separators for Natural Gas Separation, Chemical Engineering Technology, College of pipeline and Civil Engineering, China University of Petroleum, Quingdao, China 2011.
  • [15] Schinkelshoek P., Epsom H.D., Supersonic gas conditioning – commercialization of twister technology, 87th Annual Convention. Grapevine, Texas 2008.
  • [16] Wen C., Cao X. et al., Evaluation of natural gas dehydration in supersonic swirling separators applying the Discrete Particle Method, 66, Advanced Powder Technology, Department of Oil and Gas Engineering, China University of Petroleum, Qingdao, China 2011.
  • [17] Wen C., Cao X. et al., Optimization design of diffusers for supersonic separators, 44-47, 1913-1917, Applied Mechanics and Materials, Department of Oil and Gas Engineering, China University of Petroleum, Qingdao, China 2011.
  • [18] Betting M., Epsom H., High velocities make a unique separator and dewpointer, World Oil, 197-200.
  • [19] Sforza P.M., Castrogiovanni A. et al., Coal-derived syngas purification and hydrogen separation in a supersonic swirl tube, Applied Thermal Engineering, University of Florida, Gainesville, USA 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14e5bc45-cbc8-4869-9597-4a0f404acc9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.