Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Epileptic seizures result from disturbances in the electrical activity of the brain, classified as focal, generalized, or unknown. Failure to correctly classify epileptic seizures may result in inappropriate treatment and continuation of seizures. Therefore, automatic detection of generalized, focal, and other epileptic seizures from EEG signals is important. In this research article, Focal-Generalized classification method is proposed that compares traditional classification algorithms and deep learning methods. Two different classifications: four-class (Case (I) Complex Partial Seizure (CPSZ) (C4-T4 Onset)-CPSZ (FP2-F8 Onset)-CPSZ (T5-O1 Onset)- Absence Seizure (ABSZ)) and two-class (Case (II) CPSZ-ABSZ) problems are considered. This study includes preprocessing of scalp Electroencephalogram (EEG) data, feature extraction with discrete wavelet method, feature selection using Correlation-based Feature Selection (CFS) method, and classification of data with classifier algorithms (K-Nearest Neighbors (Knn), Support Vector Machine (SVM), Random Forest (RF) and Long Short-Term Memory (LSTM). The proposed method was applied on 23 subjects in the Temple University Hospital (TUH) scalp EEG data set, and a classification success rate of 95,92% for case (I) and 98,08% for case (II) was successfully achieved with deep learning architecture LSTM.
Wydawca
Czasopismo
Rocznik
Tom
Strony
575--595
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
autor
- Bahcecik Vocational and Technical Anatolian High School, Electrical and Electronics Department, Kocaeli, Turkey
autor
- Faculty of Technology, Biomedical Eng. Department of Kocaeli University, Kocaeli, Turkey
Bibliografia
- [1] Margolis JM, Chu BC, Wang ZJ, Copher R, Cavazos JE. Effectiveness of antiepileptic drug combination therapy for partial-onset seizures based on mechanisms of action. JAMA Neurology 2014;71(8):985–93.
- [2] Falco-Walter JJ, Scheffer IE, Fisher RS. The new definition and classification of seizures and epilepsy. Epilepsy Res 2018;139:73–9.
- [3] Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harbor Perspect Med 2015;5(6).
- [4] Smith SJ. EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol Neurosurg Psychiatry 2005;76(2):2–7.
- [5] Raghu S, Sriraam N, Temel Y, Rao SV, Kubben PL. EEG based multi-class seizure type classification using convolutional neural network and transfer learning. Neural Networks 2020;124:202–12.
- [6] George ST, Subathra MSP, Sairamya NJ, Susmitha L, Premkumar MJ. Classification of epileptic EEG signals using pso based artificial neural network and tunable-Q wavelet transform. Biocybernet Biomed Eng 2020;40(2):709–28.
- [7] Roy S, Asif U, Tang J, Harrer S. Seizure type classification using EEG signals and machine learning: setting a benchmark. IEEE Signal Processing in Medicine and Biology Symposium, 2020.
- [8] Segundo R, Gil-Martín M, D’Haro-Enríquez LF, Pardo JM. Classification of epileptic EEG recordings using signal transforms and convolutional neural networks. Comput Biol Med 2019;109:148–58.
- [9] Shah V, Golmohammadi M, Ziyabari S, Von Weltin E, Obeid I, Picone J. Optimizing channel selection for seizure detection. 2017 IEEE Signal Processing in Medicine and Biology Symposium, 2017.
- [10] Ferrell S, Mathew V, Refford M, Tchiong V, Ahsan T, Obeid I, Picone J. The Temple University Hospital EEG corpus: Electrode location and channel labels. Institute for Signal and Information Processing Report; 2020.
- [11] Kaynar O, Arslan H, Görmez Y, Isşık YE. Intrusion detection with machine learning and feature selection methods. J Inf Technol 2018;11(2):175–85.
- [12] al-Qerem A, Kharbat F, Nashwan S, Ashraf S, blaou K. General model for best feature extraction of eeg using discrete wavelet transform wavelet family and differential evolution. Int J Distrib Sens Netw 2020;16(3). https://doi.org/10.1177/1550147720911009.
- [13] Li B, Chen X. Wavelet-based numerical analysis: A review and classification. Finite Elem Anal Des 2014;81:14–31.
- [14] Gorur K, Bozkurt MR, Bascil MS, Bilgin C, Temurtas F. Bruxism, EEG-EMG relationship. J Clin Med Sci 2017;5(3):29–34.
- [15] Koçyiğit M, Güven A, Cam F. Classification of mental arithmetic-based task discrimination from electroencephalography signals. Electron Lett Sci Eng 2019;15(3):57–65.
- [16] Xiang J, Maue E, Fujiwara H, Mangano FT, Greiner H, Tenney J. Delineation of epileptogenic zones with high frequency magnetic source imaging based on kurtosis and skewness. Epilepsy Res 2021;172:106602.
- [17] Zheng R, Chen G, Chen H. Stationary non-gaussian random vibration control: A review. Chin J Aeronaut 2021;34(1):350–63.
- [18] Avci D. An expert system for speaker identification using adaptive wavelet sure entropy. Expert Syst Appl 2009;36
- (3):6295–300.
- [19] Alakus TB, Turkoglu I. Determination of effective EEG channels for discrimination of positive and negative emotions with wavelet decomposition and support vector machines. J Inf Technol 2019;12(3):229–37.
- [20] Goksu H. BCI oriented EEG analysis using log energy entropy of wavelet packets. Biomed Signal Process Control 2018;44:101–9.
- [21] Van L, Wu D, Chen C. Energy-efficient fast ICA implementation for biomedical signal separation. IEEE Trans Neural Networks 2011;22(11):1809–22.
- [22] Chen J, Yuan S, Lv D, Xiang Y. A novel self-learning feature selection approach based on feature attributions. Expert Syst Appl 2021;183.
- [23] Wang Z, Xiao X, Rajasekaran S. Novel and efficient randomized algorithms for feature selection. Big Data Mining Anal 2020;3(3):208–24.
- [24] Akande KO, Owolabi TO, Olatunji SO. Investigating the effect of correlation-based feature selection on the performance of support vector machines in reservoir characterization. J Nat Gas Sci Eng 2015;22:515–22.
- [25] Jain S, Saha A. Improving performance with hybrid feature selection and ensemble machine learning techniques for code smell detection. Sci Comput Program 2021;212.
- [26] Ince C, Ince K, Hanbay D. Comparison of classification methods in intrution detection systems. Comput Sci 2021;6(1):1–10.
- [27] Demir H, Erdogmuş P, Kekecoglu M. Classification of bee species using support vector machines, ANN, K-means and Knn. Düzce Univ J Sci Technol 2018;6(1):47–67.
- [28] Uludag O, Gursoy A. On the financial situation analysis with Knn and naive bayes classification algorithms. J Inst Sci Technol 2020;10(4):2881–8.
- [29] Zhao P, Lai L. Analysis of Knn information estimators for smooth distributions. IEEE Trans Inf Theory 2020;66(6):3798–826.
- [30] Gao X, Li G. A Knn model based on manhattan distance to identify the SNARE proteins. IEEE Access 2020;8:12922–112931.
- [31] Zhang L, Zhou W, Jiao L. Wavelet support vector machine. IEEE Trans Syst, Man, Cybernet, Part B (Cybernetics) 2004;34(1):34–9.
- [32] Tuncer E, Bolat ED. Epileptic seizure classification from EEG signals with support vector machines. J Polytech 2022;25 (1):239–49.
- [33] Sevgen SC, Aliefendioglu Y. Mass appraisal with a machine learning algorithm: Random forest regression. J Inf Technol 2020;13(3):301–11.
- [34] Sirin S. Hotel features analysis with random forest algorithms. Int J Manage Inf Syst Comput Sci 2020;4(2):123–32.
- [35] Tuncer E, Doğru Bolat E. Classification of epileptic seizures from electroencephalogram (EEG) data using bidirectional short-term memory (Bi-LSTM) network architecture. Biomed Signal Process Control 2022;73.
- [36] Li H, Ding M, Zhang R, Xiu C. Motor imagery EEG classification algorithm based on CNN-LSTM feature fusion network. Biomed Signal Process Control 2022;72.
- [37] Safi MS, Safi SMM. Early detection of alzheimer’s disease from EEG signals using hjorth parameters. Biomed Signal Process Control 2021;65.
- [38] Kamble A, Ghare P, Kumar V. Machine-learning-enabled adaptive signal decomposition for a brain-computer interface using EEG. Biomed Signal Process Control 2022;74.
- [39] Tasci E, Onan A. The investigation of performance effects of K-nearest neighbor algorithm parameters on classification; 18th Academic Informatics Conference; 2016.
- [40] Saputro IRD, Maryati ND, Solihati SR, Wijayanto I, Hadiyoso S, Patmasari R. Seizure type classification on EEG signal using support vector machine. J Phys Conf Ser 2019.
- [41] Sharma M, Dhere A, Pachori RB, Acharya UR. An automatic detection of focal EEG signals using new class of time–frequency localized orthogonal wavelet filter banks. Knowl-Based Syst 2017;118:217–27.
- [42] Sharma R, Pachori RB, Acharya UR. An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures. Entropy 2015;17(8):5218–40.
- [43] Siddharth T, Tripathy RK, Pachori RB. Discrimination of focal and non-focal seizures from eeg signals using sliding mode singular spectrum analysis. IEEE Sens J 2019;19(24):12286–96.
- [44] Fraiwan L, Alkhodari M. Classification of Focal and non-focal epileptic patients using single channel EEG and long shortterm memory learning system. IEEE Access 2020;8:77255–62.
- [45] Kim H, Kim DW, Lee S-T, Byun J-I, Seo J-G, No YJ, et al. Antiepileptic drug selection according to seizure type in adult patients with epilepsy. J Clin Neurol 2020;16(4):547.
- [46] Düzkalır A, Özdoğan S. Epilepsy surgery. J Contemp Med 2015;4(3):185–92.
- [47] Gürses C. Lateralizing and localizing signs in partial epileptic seizures. Epilepsy 1998;4(2–3):93–8.
- [48] Toklu Z. Epilepsy treatment strategies. Kocatepe Med J 2015;16(2):147–50.
- [49] Demir AB, Bora I. Indications of epilepsy surgery and the preparation of epilepsy patients. J Turk Neurosurg 2014;24(2):153–60.
- [50] Bican A, Bilir E, Bora I. Long term video EEG monitorization. Arch Epilepsy 2012;18(1):15–7.
- [51] Saltik S. Medical treatment in childhood epilepsies. J Turk Epilepsy Soc 2014;20(1):50–5.
- [52] Kinay D. Neuroimaging in epilepsy surgery. J Turk Epilepsy Soc 2012;18(1):18–29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14e53f9d-4378-45c6-a4d9-ef9378913ee7