PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental evaluation of circuit board components under extreme conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Designing products operating in harsh conditions is a challenging task. Years of experience, developed standards and good practices are crucial in achieving the intended result. The article shows a methodology for designing electronic systems based on the worst-case analysis (WCA) and comparing its outcomes with the experimental verification of an actual circuit through large-scale tests. The analysed diode-based semiconductor circuit is part of a temperature measuring system of industrial application. The objective of the design and analysis process is to achieve a reliable solution, which has all the required functionalities under actual, extreme operating conditions. The preliminary circuit design is developed using ideal components. The truth table, which represents customer requirements, is created to check the correct operation of the system. Simulation software, such as LTSpice, are used as the main tools to verify the correct functioning based on ideal or close-to-real component models. Next, based on the results of computer simulations, the WCA is conducted, considering all extreme (worst) operating environment parameters, such as, among others, ambient temperature or ageing. WCA results were verified through an experimental, large-scale measurement of the real system, with defined forward voltage as a function of the current flowing through the semiconductor at various ambient temperatures.
Rocznik
Strony
8--15
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Institute of Mechanic and Machine Design Foundations, Czestochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-201 Częstochowa, Poland
autor
  • Institute of Mechanic and Machine Design Foundations, Czestochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-201 Częstochowa, Poland
Bibliografia
  • 1. Smith W. M. Worst case circuit analysis-an overview (electronic parts/circuits tolerance analysis), Proc. Annu. Reliab. Maintainab. Symp. 1996; 326-334.
  • 2. Anceaume A., Cabillic G., Chevochot P., Puaut I. A middleware support for distributed safety-critical real-time applications, In Proc. of the 18th Inter. Conf. Distrib. Comp. Syst. 1998; 344–351.
  • 3. Colin A., Bernat G. Scope-tree: A program representation for symbolic worst-case execution time analysis, Proc. 14th Euromicro Conf. of Real-Time Syst. 2002; 50-59.
  • 4. Colin A., Puaut I. Worst case execution time analysis for a processor with branch prediction, Real-Time Syst. 2000;18: 249-274.
  • 5. Carlsson M., Engblom J., Ermedahl A., Lindblad J., Lisper B. Worst-case execution time analysis of disable interrupt regions in a commercial real-time operating system, Proc. Inter. Work. Real-Time Tools. 2002; 1-12.
  • 6. Engblom J., Static properties of embedded real-time programs and their implications for worst-case execution time analysis, Proc. IEEE Real-Time Tech. Appl. Symp. 1999; 46-55.
  • 7. Jacques S., Batut N., Leroy R., Gonthier L. Aging test results for high temperature triacs during power cycling, Proc. IEEE Pwr. Electro. Spec. Conf. 2008; 2447-2452.
  • 8. Lien W., Damrongplasit N., Paredes J.H., Senesky D.G., Liu T.K., Pisano A.P. 4H-SiC N-Channel JFET for operation in high-temperature environments, IEEE J. Electron Devices Soc. 2014; 2(6): 4–7
  • 9. Shwarts Y. M., Sokolov V. N., Shwarts M. M., Fedorov I. A., Venger E. F. Advanced silicon diode temperature sensors with minimized self-heating and noise for cryogenic applications, Proc. Inter. Euro. Conf. Adv. Semicond. Dev. Microsyst. 2000; 351-354.
  • 10. Ferlet-Cavrois V., Colladant T., Paillet P., Leray J.L., Musseau O., Worst-case bias during total dose irradiation of SOI transistors, IEEE Trans. Nuc. Sci. 2000; 47(6): 2183 – 2188.
  • 11. Lynch W. T. Wosrt-Case Analysis of a fesistor memory matrix, IEEE Trans. Comput. 1969; 18(10): 940-942.
  • 12. Marcovitz M., Seif E. Analytical design of resistor-coupled transistor logical circuit, IRE Trans. Elect. Comp. 1958; 7(2): 109-119.
  • 13. Tian W., Ling X. T., Liu R.W. Novel methods for circuit worst-case tolerance analysis, IEEE Trans. Circuits Syst. I. Fundam. Theory Appl. 1996; 43(4): 272-278.
  • 14. Donnelly T.J., Pekarek S.D., Fudge D., Vaks N., Zarate N. Predicting Worst Case Common-Mode behavior in power electronic based systems, IEEE Electr. Ship. Tech. Symp. 2019; 396-402.
  • 15. Spence R., Soin R. S., Tolerance design of electronic circuits, Imperial College Press; 1988.
  • 16. Divekar D.A. DC statistical circuit analysis for bipolar IC's using parameter correlations – an experimental example, Ieee T Comput Aid D. 2006; 101-103.
  • 17. Riley J. C. The accuracy of series and parallel connections of four-teminal resistors, IEEE Trans. Instrum. Meas. 1967; 16(3): 258-268.
  • 18. Sokół K., Ptak P. Experimental verification of mathematical models for failure estimation of electronic systems, Acta Phys. Pol. A 2020; 2(138): 207-209.
  • 19. Hillebrand M., Paul T. Dealing with I/O devices in the context of pervasive system verification, Inter. Conf. Comp. Dsg. 2005; 309-316.
  • 20. Nassif S.R., Strojwas A.J., Director S.W. A methodology for Worst-Case Analysis of integrated circuits, Ieee Ieee T Comput Aid D. 1986; 5(1): 104 – 113.
  • 21. Rafaila M., Decker C., Grimm C., Pelz G. Simulation-based sensitivity and worst-case analyses of automotive electronics, IEEE Symp. Dsg. Diag. Elec. Circ. Syst., 2010; 309-312.
  • 22. Maly W., Strojwas A.J. Statistical simulation of the IC manufacturing process, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 1982; 1(3): 120-131.
  • 23. Nassif S.R., Strojwas A.J., Director S.W. FABRICS II: A statistically based IC fabrication process simulator, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 1984; 3(1): 40-46,
  • 24. Lanchester P. C. Digital thermometer circuit for silicon diode sensors, Cryogenics 1989; 29 (12): 1156-1159.
  • 25. Mansoor M., Haneef I., Akhtar S., De Luca A., Udrea F. Silicon diode temperature sensors — A review of applications, Sens. Actuator A Phys. 2015; 232 (1): 63-74.
  • 26. Szmyrka-Grzebyk A., Lipiński L. Linear diode thermometer in the 4–300 K temperature range, Cryogenics 1995; 35(4): 281-284.
  • 27. Efron B., Tibshirani R. Statistical data analysis in the computer age, Science 1991; 253 (5018): 390-395.
  • 28. Zięba A. Analiza danych w naukach ścisłych i technice [Data analysis in exact sciences and technology], Wydawnictwo Naukowe PWN; 2013.
  • 29. Harry M., Ronald Lawson J. Six Sigma Producibility Analysis and Process Characterization, Addison-Wesley; 1992.
  • 30. Yang K., El-Haik B. Design for six sigma: A Roadmap for Product Development, The MacGraw-Hill Companies; 2003.
  • 31. White R. V. An Introduction to Six Sigma with a design example, Ann. Appl. Pwr. Elec. Conf. Exps. 1992; 28-35.
  • 32. Majchrzak E., Mochnacki B. Metody numeryczne [Numerical methods], Wydawnictwo Politechniki Śląskiej; 2004.
  • 33. Sorokin A. E. Experimental verification of a mathematical model for a heat store, Russ. Eng. Res. 2021; 41: 742–744.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14d8a672-8af6-43ca-ac81-c0bed6087371
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.