Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Using the Design of Experiments methodology (Response-Surface Methodology and Derringer’s Desirability Function), a simple, fast and robust RP-HPLC method was developed for the analysis of enrofloxacin (EFC), its impurity A (fluoroquinolonic acid, FQ) and impurity B (ciprofloxacin, CPX). Gradient elution of samples was performed on a Zorbax Eclipse XDB C18 column (15034.6 mm, 3.5 μm) with a mobile phase consisting of 32mM phosphate buffer pH 3.5 – methanol (0 min-19.6% methanol; 15.5 min-19.6% methanol; 29.5 min-80% methanol; 30 min-19.6% methanol; 35 min-19.6% methanol), delivered at a flow rate of 1.5 mL min1, wavelength of detection 278 nm (for EFX and CFX) and 265 nm for FQ. A good linear response was achieved in the range 15–35 μgmL1 (EFX) and LOQ150% for impurities (CFX and FQ). Other validation parameters were also tested: precision, accuracy, sensitivity and robustness. The developed method was shown to be simple, practical and suitable for the analysis of EFC and its impurities (CPX, FQ) in veterinary drugs.
Czasopismo
Rocznik
Tom
Strony
132--142
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
autor
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
autor
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
autor
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
autor
- Medicines and Medical Devices Agency of Serbia, Belgrade, Serbia
autor
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
Bibliografia
- [1] Papich, M. G. Enrofloxacin. Saunders handbook of Veterinary Drugs (4th Ed.); Papich, M. G., Ed. W.B. Saunders: St. Louis, 2016; pp 287–9.
- [2.] Drlica, K.; Malik, M.; Kerns, R. J.; Zhao, X. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother. 2008, 52(2), 385–92. https://doi.org/10.1128/AAC.01617-06.
- [3.] Pei, L. L.; Yang, W. Z.; Fu, J. Y.; Liu, M. X.; Zhang, T. T.; Li, D. B.; Huang, R. Y.; Zhang, L.; Peng, G. N.; Shu, G.; Yuan, Z. X.; Lin, J. C.; Zhang, W.; Zhong, Z. J.; Zhao, L.; Fu, H. L. Synthesis, characterization, and pharmacodynamics study of enrofloxacin mesylate. Drug Des. Devel Ther. 2020, 14, 715–30. https://doi.org/10.2147/DDDT.S239307, 32158191.
- [4.] European Pharmacopoeia 10th Ed. European Directorate for the Quality of Medicines and HealthCare (EDQM & HealthCare); Councile of Europe: Strasbourg Cedex, Strasbourg, France, 2021; pp. 2505–6.
- [5.] Ramos-Payan, M.; Ocana-Gonzalez, J. A.; Fernandez-Torres, R.; Bello-Lopez, M. A. A method for the determination of veterinary drugs from different therapeutic classes in animal urine. J. Chromatogr. Sci. 2020, 58(2), 127–35. https://doi.org/10.1093/chromsci/bmz084, 32154562.
- [6.] Jank, L.; Martins, M. T.; Arsand, J. B.; Ferrao, M. F.; Hoff, R. B.; Barreto, F.; Pizzolato, T. M. An LC-ESI-MS/MS method for residues of fluoroquinolones, sulfonamides, tetracyclines and trimethoprim in feedingstuffs: validation and surveillance. Food Addit Contam. Part A. Chem. Anal. Control Expo. Risk Assess. 2018, 35(10), 1975–89. https://doi.org/10.1080/19440049.2018.1508895, 30141745.
- [7.] Chakravarthy, V. A.; Sailaja, B. B.; Kumar, A. P. Stability-indicating RP-HPLC method for simultaneous estimation of enrofloxacin and its degradation products in tablet dosage forms. J. Anal. Methods Chem. 2015, 2015, 735145. https://doi.org/10.1155/2015/735145, 25705547.
- [8.] Batrawi, N.; Wahdan, S.; Al-Rimawi, F. A validated stabilityindicating HPLC method for simultaneous determination of amoxicillin and enrofloxacin combination in an injectable suspension. Sci. Pharm. 2017, 85(1), 6. https://doi.org/10.3390/scipharm85010006, 28212319.
- [9.] Gouda, A. A.; Amin, A. S.; El-Sheikh, R.; Yousef, A. G. Spectrophotometric determination of gemifloxacin mesylate, moxifloxacin hydrochloride, and enrofloxacin in pharmaceutical formulations using Acid dyes. J. Anal. Methods Chem. 2014, 2014, 286379. https://doi.org/10.1155/2014/286379, 24587941.
- [10.] Reboucas, C. T.; Kogawa, A. C.; Salgado, H. R. N. A new Green method for the quantitative analysis of enrofloxacin by Fouriertransform infrared spectroscopy. J. AOAC Int. 2018, 101(6), 2001–5. https://doi.org/10.5740/jaoacint.17-0431, 29776457.
- [11.] Shen, X.; Chen, J.; Lv, S.; Sun, X.; Dzantiev, B. B.; Eremin, S. A.; Zherdev, A. V.; Xu, J.; Sun, Y.; Lei, H. Fluorescence polarization immunoassay for determination of enrofloxacin in pork liver and chicken. Molecules 2019, 24(24), 4462. https://doi.org/10.3390/molecules24244462, 31817455.
- [12] Brereton, R. G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; Wiley: Chichester, 2003.
- [13] Mason, R. L. G. R.; Hess, J. L. Statistical Design and Analysis of Experiments; John Wiley & Sons: New Jersey, 2003.
- [14] Araujo, P. W.; Brereton, R. G. Experimental design II. Optimization. TrAC Trends Anal. Chem. 1996, 15(2), 63–70.
- [15.] Sahu, P. K.; Ramisetti, N. R.; Cecchi, T.; Swain, S.; Patro, C. S.; Panda, J. An overview of experimental designs in HPLC method development and validation. J. Pharm. Biomed. Anal. 2018, 147, 590–611. https://doi.org/10.1016/j.jpba.2017.05.006.28579052.
- [16.] Ferreira, S. L.; Bruns, R. E.; da Silva, E. G.; Dos Santos, W. N.; Quintella, C. M.; David, J. M.; Bittencourt de Andrade, J.; Breitkreitz, M. C.; Sales Fontes Jardim, I. C.; Neto, B. B Statistical designs and response surface techniques for the optimization of chromatographic systems. J. Chromatogr. A. 2007, 1158(1–2), 2–14. https://doi.org/10.1016/j.chroma.2007.03.051,17416377.
- [17] Dean Angela, V. D.; Draguljic, D. Design and Analysis of Experiments - Response Surface Methodology; Springer Texts In Statistics Springer: Cham, 2017; pp 565–614.
- [18.] Ferreira, S. L.; Bruns, R. E.; Ferreira, H. S.;Matos, G. D.; David, J. M.; Brandao, G. C.; da Silva, E. G. P.; Portugal, L. A.; dos Reis, P. S.; Souza, A. S.; dos Santos, W. N. L. Box-Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597(2), 179–86. https://doi.org/10.1016/j.aca.2007.07.011.17683728.
- [19.] Kasagic-Vujanovic, I.; Kne zevic, D. Design of experiments In optimization and validation of hydrophilic interaction liquid chromatography method for determination of amlodipine besylate and its impurities. Acta Chromatogr. 2021, 34(1), 41–52. https://doi.org/10.1556/1326.2020.00875.
- [20] Chatterjee, S.; Simonoff, J. S. Handbook of Regression Analysis; John Wiley & Sons: New Jersey, 2012.
- [21.] Kasagic-Vujanovic, I.; Jancic-Stojanovic, B. Quality by Design oriented development of hydrophilic interaction liquid chromatography method for the analysis of amitriptyline and its impurities. J. Pharm. Biomed. Anal. 2019, 173(5), 86–95. https://doi.org/10.1016/j.jpba.2019.05.026, 31125948.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14d89084-96fa-479a-b85c-ef58d01ef2ac