PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of experiments and Derringer’s desirability function in optimisation and validation of RP-HPLC method for the analysis of enrofloxacin and its impurities

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the Design of Experiments methodology (Response-Surface Methodology and Derringer’s Desirability Function), a simple, fast and robust RP-HPLC method was developed for the analysis of enrofloxacin (EFC), its impurity A (fluoroquinolonic acid, FQ) and impurity B (ciprofloxacin, CPX). Gradient elution of samples was performed on a Zorbax Eclipse XDB C18 column (15034.6 mm, 3.5 μm) with a mobile phase consisting of 32mM phosphate buffer pH 3.5 – methanol (0 min-19.6% methanol; 15.5 min-19.6% methanol; 29.5 min-80% methanol; 30 min-19.6% methanol; 35 min-19.6% methanol), delivered at a flow rate of 1.5 mL min1, wavelength of detection 278 nm (for EFX and CFX) and 265 nm for FQ. A good linear response was achieved in the range 15–35 μgmL1 (EFX) and LOQ150% for impurities (CFX and FQ). Other validation parameters were also tested: precision, accuracy, sensitivity and robustness. The developed method was shown to be simple, practical and suitable for the analysis of EFC and its impurities (CPX, FQ) in veterinary drugs.
Rocznik
Strony
132--142
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
  • Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
  • Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
autor
  • Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
  • Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
  • Medicines and Medical Devices Agency of Serbia, Belgrade, Serbia
  • Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
Bibliografia
  • [1] Papich, M. G. Enrofloxacin. Saunders handbook of Veterinary Drugs (4th Ed.); Papich, M. G., Ed. W.B. Saunders: St. Louis, 2016; pp 287–9.
  • [2.] Drlica, K.; Malik, M.; Kerns, R. J.; Zhao, X. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother. 2008, 52(2), 385–92. https://doi.org/10.1128/AAC.01617-06.
  • [3.] Pei, L. L.; Yang, W. Z.; Fu, J. Y.; Liu, M. X.; Zhang, T. T.; Li, D. B.; Huang, R. Y.; Zhang, L.; Peng, G. N.; Shu, G.; Yuan, Z. X.; Lin, J. C.; Zhang, W.; Zhong, Z. J.; Zhao, L.; Fu, H. L. Synthesis, characterization, and pharmacodynamics study of enrofloxacin mesylate. Drug Des. Devel Ther. 2020, 14, 715–30. https://doi.org/10.2147/DDDT.S239307, 32158191.
  • [4.] European Pharmacopoeia 10th Ed. European Directorate for the Quality of Medicines and HealthCare (EDQM & HealthCare); Councile of Europe: Strasbourg Cedex, Strasbourg, France, 2021; pp. 2505–6.
  • [5.] Ramos-Payan, M.; Ocana-Gonzalez, J. A.; Fernandez-Torres, R.; Bello-Lopez, M. A. A method for the determination of veterinary drugs from different therapeutic classes in animal urine. J. Chromatogr. Sci. 2020, 58(2), 127–35. https://doi.org/10.1093/chromsci/bmz084, 32154562.
  • [6.] Jank, L.; Martins, M. T.; Arsand, J. B.; Ferrao, M. F.; Hoff, R. B.; Barreto, F.; Pizzolato, T. M. An LC-ESI-MS/MS method for residues of fluoroquinolones, sulfonamides, tetracyclines and trimethoprim in feedingstuffs: validation and surveillance. Food Addit Contam. Part A. Chem. Anal. Control Expo. Risk Assess. 2018, 35(10), 1975–89. https://doi.org/10.1080/19440049.2018.1508895, 30141745.
  • [7.] Chakravarthy, V. A.; Sailaja, B. B.; Kumar, A. P. Stability-indicating RP-HPLC method for simultaneous estimation of enrofloxacin and its degradation products in tablet dosage forms. J. Anal. Methods Chem. 2015, 2015, 735145. https://doi.org/10.1155/2015/735145, 25705547.
  • [8.] Batrawi, N.; Wahdan, S.; Al-Rimawi, F. A validated stabilityindicating HPLC method for simultaneous determination of amoxicillin and enrofloxacin combination in an injectable suspension. Sci. Pharm. 2017, 85(1), 6. https://doi.org/10.3390/scipharm85010006, 28212319.
  • [9.] Gouda, A. A.; Amin, A. S.; El-Sheikh, R.; Yousef, A. G. Spectrophotometric determination of gemifloxacin mesylate, moxifloxacin hydrochloride, and enrofloxacin in pharmaceutical formulations using Acid dyes. J. Anal. Methods Chem. 2014, 2014, 286379. https://doi.org/10.1155/2014/286379, 24587941.
  • [10.] Reboucas, C. T.; Kogawa, A. C.; Salgado, H. R. N. A new Green method for the quantitative analysis of enrofloxacin by Fouriertransform infrared spectroscopy. J. AOAC Int. 2018, 101(6), 2001–5. https://doi.org/10.5740/jaoacint.17-0431, 29776457.
  • [11.] Shen, X.; Chen, J.; Lv, S.; Sun, X.; Dzantiev, B. B.; Eremin, S. A.; Zherdev, A. V.; Xu, J.; Sun, Y.; Lei, H. Fluorescence polarization immunoassay for determination of enrofloxacin in pork liver and chicken. Molecules 2019, 24(24), 4462. https://doi.org/10.3390/molecules24244462, 31817455.
  • [12] Brereton, R. G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; Wiley: Chichester, 2003.
  • [13] Mason, R. L. G. R.; Hess, J. L. Statistical Design and Analysis of Experiments; John Wiley & Sons: New Jersey, 2003.
  • [14] Araujo, P. W.; Brereton, R. G. Experimental design II. Optimization. TrAC Trends Anal. Chem. 1996, 15(2), 63–70.
  • [15.] Sahu, P. K.; Ramisetti, N. R.; Cecchi, T.; Swain, S.; Patro, C. S.; Panda, J. An overview of experimental designs in HPLC method development and validation. J. Pharm. Biomed. Anal. 2018, 147, 590–611. https://doi.org/10.1016/j.jpba.2017.05.006.28579052.
  • [16.] Ferreira, S. L.; Bruns, R. E.; da Silva, E. G.; Dos Santos, W. N.; Quintella, C. M.; David, J. M.; Bittencourt de Andrade, J.; Breitkreitz, M. C.; Sales Fontes Jardim, I. C.; Neto, B. B Statistical designs and response surface techniques for the optimization of chromatographic systems. J. Chromatogr. A. 2007, 1158(1–2), 2–14. https://doi.org/10.1016/j.chroma.2007.03.051,17416377.
  • [17] Dean Angela, V. D.; Draguljic, D. Design and Analysis of Experiments - Response Surface Methodology; Springer Texts In Statistics Springer: Cham, 2017; pp 565–614.
  • [18.] Ferreira, S. L.; Bruns, R. E.; Ferreira, H. S.;Matos, G. D.; David, J. M.; Brandao, G. C.; da Silva, E. G. P.; Portugal, L. A.; dos Reis, P. S.; Souza, A. S.; dos Santos, W. N. L. Box-Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597(2), 179–86. https://doi.org/10.1016/j.aca.2007.07.011.17683728.
  • [19.] Kasagic-Vujanovic, I.; Kne zevic, D. Design of experiments In optimization and validation of hydrophilic interaction liquid chromatography method for determination of amlodipine besylate and its impurities. Acta Chromatogr. 2021, 34(1), 41–52. https://doi.org/10.1556/1326.2020.00875.
  • [20] Chatterjee, S.; Simonoff, J. S. Handbook of Regression Analysis; John Wiley & Sons: New Jersey, 2012.
  • [21.] Kasagic-Vujanovic, I.; Jancic-Stojanovic, B. Quality by Design oriented development of hydrophilic interaction liquid chromatography method for the analysis of amitriptyline and its impurities. J. Pharm. Biomed. Anal. 2019, 173(5), 86–95. https://doi.org/10.1016/j.jpba.2019.05.026, 31125948.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14d89084-96fa-479a-b85c-ef58d01ef2ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.