PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vacuum Brazing of Stainless Steel Depending on the Surface Preparation Method and Temperature of the Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses issues related to optimising the technological parameters of the process of brazing gold in a vacuum furnace. An investigation of the brazing process was carried out for materials used in constructing components for aircraft engine fuel systems. The vacuum brazed material was AMS 5510 stainless steel (in the form of plates and pipes). AMS 4787 (BAu-4) was used as the brazing filler. In particular, the influence of the method of preparing the surface on solder spreading and the thickness of the diffusion zone were analysed. The best spreading of solder was obtained for nickel plated surfaces. When the sample surface was more rough or scratched, the effect of the spreading of solder was limited and the diffusion process of the solder into the base material became dominant. Moreover, the influence of the brazing temperature on microstructure changes and on interdiffusion of the AMS 5510 stainless steel/BAu-4 solder system was determined. It was observed that an increase in the brazing temperature modifies the morphology of the formed joint by forming a massive and rounded phase. Furthermore, an increase in the brazing temperature enhances the exchange of components.
Twórcy
autor
  • Cracow University of Technology, Institute of Materials Engineering, 24 Warszawska Str., 31-155 Kraków, Poland
autor
  • Pratt&Whitney Tubes Sp. z o.o., 4 Grabska Str., 32-005 Niepołomice, Poland
autor
  • Cracow University of Technology, Institute of Materials Engineering, 24 Warszawska Str., 31-155 Kraków, Poland
Bibliografia
  • [1] T. Zaharinie, R. Moshwan, F. Yusof, M. Hamdi, T. Ariga, Vacuum brazing of sapphire with Inconel 600 using Cu/Ni porous composite interlayer for gas pressure sensor application, Materials & Design 54, 375-381 (2014).
  • [2] P. Prakash, T. Mohandas, P. Dharma Raju, Microstructural characterization of SiC ceramic and SiC–metal active metal brazed joint, Scripta Materialia 52, 1169-1173 (2005).
  • [3] G. Srinivasan, A. K. Bhaduri, S. K. Ray, V. Shankar, Vacuum brazing of Inconel 600 sleeve to 316L stainless steel sheath of mineral insulated cable, Journal of Materials Processing Technology 198, 73-76 (2008).
  • [4] L. Wojarski, W. Tillmann, TLP brazing of aluminum to steel using PVD-deposited interlayer, Weld World 58, 673-680 (2014).
  • [5] D. P. Yadav, R. Kaul, P. Ganesh, R. Shiroman, R. Sridhar, L. M. Kukreja, Study on vacuum brazing of high purity alumina for application in proton synchrotron, Materials & Design 64, 415-422 (2014).
  • [6] H. Nishikawa, N. Iwata, Formation and growth of intermetallic compound layers at the interface during laser soldering using Sn–Ag Cu solder on a Cu Pad, Journal of Materials Processing Technology 215, 6-11 (2015).
  • [7] K. Saida, H. Ohnishi, K. Nishimoto, Laser brazing of TiAl intermetallic compound using precious brazing filler metals, Weld World, DOI 10.1007/s40194-014-0173-4 (2014).
  • [8] J. Wei, B. Deng, X. Gao, J. Yan, X. Chen, Interface structure characterization of Fe36Ni alloy with ultrasonic soldering, Journal of Alloys and Compounds 576, 386-392 (2013).
  • [9] N. Wu, Y. Li, J. Wang, Microstructure of Ni-NiCr laminated composite and Cr18-Ni8 steel joint by vacuum brazing, Vacuum 86, 2059-2063 (2012).
  • [10] D. Honggang, Y. Zhonglin, Y. Guoshun, D. Chuang, Vacuum brazing of TiAl alloy to 40Cr steel with Ti60Ni22Cu10Zr8 alloy foil as filler metal, Materials Science and Engineering A 561, 252-258 (2013).
  • [11] R. Soltani Tashi, S.A.A. Akbari Mousavi, M. Mazar Atabak, Diffusion brazing of Ti–6Al–4V and austenitic stainless steel using silver-based interlayer, Materials & Design 54, 161-167 (2014).
  • [12] S. D. Nelson, S. Liu., S. Kottilingam, J. C. Madeni, Spreading and solidification behavior of nickel wide-gap brazes. The characterization of braze alloys containing boron and silicon for the repair of nickelbased superalloy turbine components, Weld World 58, 593-600 (2014).
  • [13] L. Sanchez, D. Carrillo, E. Rodriguez, F. Aragon, J. Sotelo, F. Toral, Development of high precision joints in particle accelerator components performed by vacuum brazing, Journal of Materials Processing Technology 211, 1379-1385 (2011).
  • [14] J. Nowacki, M. Danielewski, R. Filipek, Brazed joints evaluation and computer modeling of mass transport in multi-component systems in the Au–Ni solder-14-5 PH joints, Journal of Materials Processing Technology 157-158, 213-220 (2004).
  • [15] Z. Mirski, T. Piwowarczyk, Wettability of hardmetal surfaces prepared for brazing with various methods, Archives of Civil and Mechanical Engineering 11 (2), 411-419 (2011).
  • [16] J. Baranowski, Lutowanie twarde części w przemyśle lotniczym, Przegląd Spawalnictwa 8-9, 57-59 (2004).
  • [17] K. Lankiewicz, M. Baranowski, T. Babul, S. Kowalski, The study of the impact of surface preparation methods of Inconel 625 and 718 nickel-base alloys on wettability by BNi-2 and BNi-3 brazing filler metals, Archives of Metallurgy and Materials 60 (2), 739-745 (2015).
  • [18] H. Okamoto, T. B. Massalski, Binary phase diagram (Au-Ni) in Alloy phase diagrams, Handbooks, ASM. 3. Materials Park, Ohio: ASM International (1991).
  • [19] J. Nowacki, M. Danielewski, R. Filipek, Brazed joints evaluation and computer modelling of mass transport in multi-component systems in the Au-Ni solder-14-5 PH joints, Journal of Materials Processing Technology 157, 213-220 (2004).
  • [20] D. W. Liaw, R. K. Shiue, Infrared brazing of Mo using the 70Au-22Ni-8Pd alloy, International Journal of Refractory Metals & Hard Materials 23 (2), 91-97 (2005).
  • [21] Y. Sun, J. Zhang, H. W. Zhang, G. H. Fan, Y. M. He, Microstructure evolution of the Si3N4/Si3N4 joints brazed using Au-Ni-V filler alloys with different V content, Journal of Alloys and Compounds 509, 8407- 8412 (2011).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14d3a1b9-7284-414e-899e-ee56e15de5bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.