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Abstract

Rule extraction from neural networks is a fervent research topic. In the last 20 years
many authors presented a number of techniques showing how to extract symbolic rules
from Multi Layer Perceptrons (MLPs). Nevertheless, very few were related to ensem-
bles of neural networks and even less for networks trained by deep learning. On several
datasets we performed rule extraction from ensembles of Discretized Interpretable Multi
Layer Perceptrons (DIMLP), and DIMLPs trained by deep learning. The results obtained
on the Thyroid dataset and the Wisconsin Breast Cancer dataset show that the predic-
tive accuracy of the extracted rules compare very favorably with respect to state of the
art results. Finally, in the last classification problem on digit recognition, generated rules
from the MNIST dataset can be viewed as discriminatory features in particular digit areas.
Qualitatively, with respect to rule complexity in terms of number of generated rules and
number of antecedents per rule, deep DIMLPs and DIMLPs trained by arcing give similar
results on a binary classification problem involving digits 5 and 8. On the whole MNIST
problem we showed that it is possible to determine the feature detectors created by neu-
ral networks and also that the complexity of the extracted rulesets can be well balanced
between accuracy and interpretability.
Keywords: ensembles, Deep Learning, rule extraction, feature detectors

1 Introduction

A main drawback of artificial neural networks
is that they have no explicit declarative knowledge
representation. They have considerable difficulty in
generating the required explanation structures. The
absence of an explanation capability in neural net-
works limits the achievement of the full potential
of such systems, whereas the detailed characteri-
zation of classification strategies would contribute
to their acceptance. Expert systems benefit from

an explicit declarative representation of knowledge
about the problem domain. Hence, a natural way
to elucidate the knowledge embedded within neural
networks is to extract symbolic rules, even if this
problem is known to be NP-hard [1]. Very recently,
Hailesilassie explained in a review [2] that most of
rule extraction algorithms are applied to MLPs with
a hidden layer. Unexpectedly, very little work was
achieved with respect to deep neural networks. Fill-
ing this gap may contribute to the real world usabil-
ity of deep MLPs.
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Figure 5. Retrieval success rates with changing the
correlation in the original memory patterns.

Next, we show the dependence of the critical
loading rate on the correlation in the memory pat-
terns. The critical loading rate is defined as the
loading rate when the overlaps of the retrieved pat-
tern and its original pattern is lower than a thresh-
old. Figure 6 shows the critical loading rates against
the correlations. The threshold was set to 0.95 in
this result. From this Figure, we find that the crit-
ical loading rates in CHNNs and QHNNs are also
decreased slower than those in RHNNs.

Figure 6. Critical loading rates with changing the
correlation in the original memory patterns.

6 Discussion

We discuss reasons why the retrieval perfor-
mance in pseudo-orthogonalization is maintained
by utilizing complex numbers and quaternions.
We first examined the storage capacity of pseudo-
orthogonalized patterns against correlations in the
original memory patterns. Figure. 7 shows the
changes of critical loading rates with increasing
the correlations for the memory patterns. We per-
formed this experiment under the same conditions

in the previous Section. The overlaps for calcu-
lating the critical loading rate were obtained by
averaging 100 trials in 1000 updates. In each
of these trials, an initial configuration are set to
one of the memory patterns, by using Eqs. (2),(4),
and (12). From the results, the critical loading
rates for RHNNs were decreased with the increase
of the correlations, however the critical loading
rates for CHNNs and QHNNs were not changed
under the same conditions. The memory pat-
terns become more unstable with the increase of
the correlation for the original memory patterns
in RHNNs. In contrast, the memory patterns in
CHNNs and QHNNs are stable when the correla-
tion is increased. The complex-valued and quater-
nionic pseudo-orthogonalization methods can stabi-
lize highly correlated memory patterns better than
conventional real-valued method does. Therefore,
the retrieval performance of CHNNs and QHNNs
are maintained even if the correlation in the mem-
ory patterns is increased.

Figure 7. Effect of the correlation of the original
memory patterns on the stability of stored patterns.

7 Conclusion

In this paper, we have investigated the sta-
bility and retrieval performances for the pseudo-
orthogonalization from the viewpoint of correla-
tions in memory patterns. The extended pseudo-
orthogonalization method based on complex num-
bers and quaternions has been evaluated by chang-
ing the correlation of memory patterns.

The experimental results show that the mem-
ory patterns tend to be more unstable with the
increase of the correlation in the original mem-
ory patterns in conventional real-valued pseudo-
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The Discretized Interpretable Multi Layer Per-
ceptron (DIMLP) was introduced in [3] [4]. This
feed forward neural network model represents a
constrained Multi Layer Perceptron (MLP) archi-
tecture that can be used to learn any classification
problem. The main advantage of DIMLPs is that
symbolic rules are extracted in polynomial time and
this can also be performed for DIMLP ensembles
[5]. In this work we first apply DIMLP ensembles
to the Thyroid dataset and the Wisconsin Breast
Cancer diagnosis problem, two well-known bench-
mark datasets. The obtained results show that the
predictive accuracy of the extracted rules compare
very favorably with respect to state of the art re-
sults. Then, deep DIMLP networks trained with
stacked autoencoders are applied to MNIST; a well-
known datasets in the computer vision domain. Our
main contribution is the characterization of the fea-
ture detectors extracted by applying rule extraction
to deep DIMLPs.

In fact, feature detectors correspond to rule an-
tecedents of generated rules. Moreover, from each
feature detector we calculate a centroid of the cov-
ered samples, which allows us to visualize aver-
age patterns detected by feature detectors. Rules
extracted from the MNIST dataset play the role of
discriminatory features in particular areas of digits.
Another question we tackle is whether the knowl-
edge embedded within DIMLPs trained by deep
learning is different from that found in DIMLP en-
sembles, with respect to feature complexity. In the
following Sections we first explain the difficulty of
rule extraction and give a summary of representa-
tive techniques. In Section 3 we present the DIMLP
model as a single neural network, then as an ensem-
ble of DIMLPs and lastly as a single deep network
made of stacked autoencoders. Section 4 describes
the experiments on three classification problems in-
cluding a discussion, followed by a conclusion.

2 The difficulty of rule extraction
from neural networks

A symbolic rule is defined as: “if tests on an-
tecedents are true then conclusion”; where “tests on
antecedents” are in the form xi ≤ vi or xi ≥ vi; with
xi as an input variable and vi as a real number. Given
a neural network model to classify data in hypothe-
sis h, rule extraction aims to obtain a description ĥ

which approximates h as closely as possible (ĥ≈ h).
Ideally, ĥ would be represented by a small number
of rules and antecedents.

The complexity of rulesets is often defined as
a measure of two variables: number of rules; and
number of antecedents per rule. Low complexity
rulesets are preferred than those with high complex-
ity, which involves a large number of rules with
a large number of antecedents. However, Freitas
pointed out that the comprehensibility of rules is
not necessarily related to a small number of rules
[6]. Usually, with a large number of extracted rules,
comprehensibility is assumed to be low. However,
Freitas has identified several drawbacks with re-
spect to model size as the only measure of compre-
hensibility [6]. He proposed a new measure denoted
as prediction-explanation size, which strongly de-
pends on the average number of antecedents per
rule.

Rule extraction from neural networks can also
be viewed as an optimization problem, since a clear
trade-off between accuracy and comprehensibility
is present. Typically, a greater number of rules may
provide better accuracy while diminishing compre-
hensibility. Moreover, another trade-off is related
to the number of rules and the number of uncov-
ered samples. Specifically, higher numbers of rules
decreases the number of uncovered samples while
it degrades the level of comprehensibility. For in-
stance, in a medical classification problem with
classes sick and healthy a physician could be in-
terested to solely explain why a patient is sick.
Hence, all rules belonging to class healthy would
be ignored. Without rules of class healthy a ruleset
would be smaller (thus, with higher comprehensi-
bility and reduced covering), but it will be impossi-
ble to explain why a patient is healthy.

Another important distinction of the extracted
rules is whether they are ordered or not. Ordered
rules correspond to:

if tests on antecedents are true then . . . ,

else if tests on antecedents are true then . . . ,

. . . ,

else . . .

Because of the presence of “else”, a rule im-
plicitly negates the antecedents of the previous rule.
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Thus, with the exception of the first rule all the
other rules depend also on a number of hidden an-
tecedents corresponding to the negation of the pre-
vious antecedents. In unordered rules “else if” is
never present. Thus, contrary to ordered rulesets, a
sample can activate more than a rule. Generally, un-
ordered rulesets present more rules and antecedents
than ordered ones, since all rule antecedents are ex-
plicitly characterized. Hence, long ordered rulesets
are difficult to understand since they potentially in-
clude many implicit antecedents. Contrary to or-
dered rules, each rule of an unordered ruleset repre-
sents a single piece of knowledge that can be exam-
ined in isolation, since all antecedents are explicitly
given. With a great number of unordered rules, one
would try to accurately understand the meaning of
each rule with respect to the data domain. Thus, af-
ter a careful inspection of all pieces of knowledge,
getting the global picture could be long. However,
one could be interested to only some parts of the
whole knowledge, for instance those rules with the
highest number of covered samples.

2.1 Commonly used approach: feature de-
tectors

Feature detectors represent characteristic pat-
terns contributing to the classification of data sam-
ples. As an example, oriented edges play a signif-
icant role for the classification of objects. Typical
analysis approaches of neural networks trained by
deep learning associate feature detectors to hidden
neurons. Specifically, patterns involving strong ac-
tivation of a hidden neuron are defined from the in-
coming weight signs [7]. Usually, only a feature
detector is associated to a hidden neuron.

Let us suppose that an MLP has a hidden layer
to learn a classification problem with 2D input pic-
tures, as shown in Figure 1.

Further, we suppose that:

– input values are binary with values 0 and 1,

– weight values are binary with values −ω and ω
(ω being a constant),

– the activation function of hidden neurons and
output neurons is a sigmoid function given as

σ(x) =
1

1+ exp(−x)
. (1)

Fully connected

Hidden layer
Input layer Output layer

Figure 1. An MLP for a classification task with an
input layer representing pixels of a picture and an

output layer coding several classes.

In the network shown in Figure 1 we have full
connectivity between the input layer and the hid-
den layer, as well as between the hidden layer and
the output layer, with each connection being associ-
ated with a weight value. The incoming weight val-
ues related to a hidden neuron define a feature de-
tector composed of a sub-vector of positive weight
values and a sub-vector of negative weight values.
Specifically, weight values equal to ω represent in-
put neurons which activate that hidden neuron the
most, while weight values equal to −ω inhibit that
neuron the strongest. If an input picture matches
a subset of a feature detector (for instance, when
a subset of input neurons with values equal to one
correspond to a subset of weight values equal to ω),
then the corresponding hidden neuron will be acti-
vated but not at maximal activation. An input pic-
ture that does not match the feature will not activate
the corresponding hidden neuron.

The simple method of defining feature detec-
tors from strong magnitude weight values can not
be carried out for realistic neural networks. Usually,
input values and weights are continuous; thus for a
given hidden neuron activation there will be many
possible different input patterns that makes the fea-
ture extraction process much more complex. There-
fore, we only have an intuitive idea of the over-
all classification strategy. In addition, network re-
sponses depends also on the weight matrix between
the hidden layer and the output layer. With many
hidden layers as in deep networks feature charac-
terization becomes intractable.
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2.2 State of the art

Since the earliest work of Gallant [8], many
techniques have been introduced. Andrews et al.
presented a taxonomy to characterize rule extrac-
tion techniques [9]. Essentially, rule extraction al-
gorithms belong to three categories: decomposi-
tional; pedagogical; and eclectic. In decomposi-
tional techniques rules are extracted at the level of
hidden and output neurons by analyzing weight val-
ues. Here a basic requirement is that the computed
output from each hidden and output unit must be
mapped into a binary outcome which corresponds
to the notion of a rule consequent. Note that only
shallow networks are analyzed by algorithms be-
longing to this category.

The basic idea of the pedagogical approach is
to view rule extraction as a learning task where the
target concept is the function computed by the net-
work and the input attributes are simply the net-
work’s input neurons. Finally, the eclectic approach
takes into account elements of both decomposi-
tional and pedagogical techniques. More recently,
Diederich et al. published a book on techniques
to extract symbolic rules from Support Vector Ma-
chines (SVMs) [10].

Hansen and Salamon demonstrated that com-
bining several neural networks in an ensemble can
improve the predictive accuracy with respect to a
single model [11]. Nevertheless, only a few au-
thors started to extract rules from neural network
ensembles. Bologna proposed the Discretized Inter-
pretable Multi Layer Perceptron (DIMLP) to pro-
duce unordered symbolic rules from both single
networks and ensembles [4]. Zhou et al. intro-
duced the REFNE algorithm (Rule Extraction from
Neural Network Ensemble) [12], which utilizes the
trained ensembles to generate instances and then
extracts symbolic rules from those instances. At-
tributes are discretized during rule extraction and
it also uses particular fidelity evaluation mecha-
nisms. Moreover, rules have been limited to only
three antecedents. More recently Hara and Hayashi
proposed the two-MLP ensembles by using the
Recursive-Rule eXtraction (Re-RX) algorithm [13]
for data with mixed attributes [14]. Re-RX utilizes
C4.5 decision trees and back-propagation to train
the MLPs recursively. Here, the rule antecedents
for discrete attributes are disjointed from those for
continuous attributes. Subsequently Hayashi at al.

presented the three-MLP Ensemble by the Re-RX
algorithm [15].

With the advent of deep architectures, sub-
stantial improvements were accomplished for many
classification problems in computer vision. How-
ever, very few works have investigated rule extrac-
tion from neural networks trained by deep learning,
the main difficulty being the complexity of knowl-
edge representation in the hidden layers [2]. An
open question is whether their embedded knowl-
edge is more complex or not than that related to
shallow architectures. Moreover, rule extraction
from deep networks could contribute to better char-
acterize how the predictive accuracy is improved
with respect to shallow architectures. The first work
on rule inference from Deep Belief Networks was
achieved by Garcez and Tran [16]. Note however
that the behavior of these stochastic networks is
very different with respect to MLPs, which are de-
terministic.

Zilke introduced a rule extraction algorithm
that was applied to deep MLPs [17] by extend-
ing an already existing decompositional method
[18]. Specifically, this rule extraction technique
uses C4.5 decision trees [19]. Essentially, rules
are generated from the activations of the last hid-
den layer with respect to the classes coded in the
output layer. By going toward the input layer, rules
are generated from the activations of two successive
layers. At the end, after aggregation of the rules and
by transitivity, rules describes relations between the
input layer and the output layer. To reduce compu-
tational time, pruning is executed in order to remove
the less important components of a deep network.
Although on the MNIST problem this technique did
not obtain very accurate rules, on other datasets it
yielded good accuracy results.

3 The DIMLP model

In [20] we presented the Interpretable Multi
Layer Perceptron (IMLP), from which symbolic
rules can be generated in an easier way with respect
to a standard MLP. An example of this network is
shown in Figure 2.
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Figure 2. An example of an IMLP network with
two hidden layers.

Later we presented the DIMLP model [3],
which is a generalization of the IMLP model and
finally we demonstrated how to generate symbolic
rules from DIMLP ensembles [5].

3.1 IMLP networks

The main difference between an IMLP network
and a standard MLP resides in the connectivity con-
figuration between the input layer and the first hid-
den layer. A hidden neuron is connected to only an
input neuron (and the bias virtual neuron), with its
activation function being a step function. The out-
put hk of the kth neuron of the first hidden layer is

hk =

{
1 if ∑l wkl · xl > 0
0 otherwise

. (2)

In the layers above the first hidden layer the ac-
tivation function is a sigmoid function (cf. eq. 1).
As a result, discriminative boundaries are linear and
parallel to the axis. To clarify this property an ex-
ample is shown in Figure 3.

The role of the step activation function is to
define possible discriminative hyperplanes that are
precisely determined with the weight values of the
incoming connections. For instance, in Figure 3 we
define a problem with two different classes. Let us
assume that the first is characterized when y1 > 0.5
and the second with y1 ≤ 0.5. Thus, a possible
hyperplane decision boundary could be located in
−w0/w1. Nevertheless, only when v1 > |v0| this hy-
perplane is a discriminative frontier.

Figure 4 illustrates an example with two dis-
criminative hyperplanes, while in Figure 5 is shown

an IMLP network unable to learn a classification
problem of two classes. Specifically, weights be-
tween the hidden layer and the output layer can-
not create two discriminative hyperplanes, because
the activation values of h1 and h2 defines a logi-
cal XOR problem, which is not linearly separable.
By adding a second hidden layer this classification
problem is solved, because the XOR problem de-
fined in the space of binary neurons h1 and h2 that
is non-linearly separable requires one more hidden
layer.

v1 = 1

1

1 x1

h1

y1

w0 w1

x1

x2

−w0/w1

v0 = −2

h1 = 0 h1 = 1

1

1 x1

h1

y1

w0 w1

x1

x2

−w0/w1

v0 = −2 v1 = 3

h1 = 0 h1 = 1

Figure 3. Example of IMLP networks with a
unique hidden layer. The network at the top creates
a discriminative hyperplane that depends on weight

values v0 and v1.

v2 = −3

1 h1 h2

x1

x2 h1 = 0 h1 = 1
h2 = 0 h2 = 0

y1

1 x1
w1 w2

w20w10

h1 = 1
h2 = 1

−w10/w1 −w20/w2

v0 = −1
v1 = 2

Figure 4. An IMLP network creating two
discriminative hyperplanes.
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1 h1 h2

x1

x2 h1 = 0 h1 = 1

y1

w1

w20w10

-w10/w1

w2

1 x2x1

-w20/w2
h1 = 1h1 = 0

h2 = 0 h2 = 0

h2 = 1 h2 = 1

Figure 5. An IMLP network unable to correctly
classify a problem of two classes, since with a step
function in the hidden layer the activation values of

h1 and h2 define a XOR problem.

The training of an IMLP network was per-
formed by simulated annealing [20], since the gra-
dient is undefined with step activation functions.
A faster learning algorithm for IMLPs with only
one hidden layer could be the one used for Extreme
Learning Machines [21]. Specifically, weights be-
tween the input layer and the hidden layer are fixed
with random values, then weights between the hid-
den layer and the output layer are calculated with
the pseudo-inverse of the weight matrix. Finally,
rules are generated from IMLPs by performing sim-
plification of the boolean expressions related to the
activations of the first hidden layer and the class de-
termined by the network.

3.2 DIMLP networks

DIMLP networks are a generalization of IMLP
networks. In the first hidden layer the activation
function becomes a staircase function that approxi-
mates the sigmoid function σ(x). Specifically, with
Rmin and Rmax representing range bounds equal to
−5 and 5, the staircase function S(x) is defined as

S(x) = σ(Rmin) if x ≤ Rmin, (3)

S(x) = σ(Rmax) if x ≥ Rmin, (4)

S(x) = σ(Rmin +

[
q · x−Rmin

Rmax −Rmin

]
(
Rmax −Rmin

q
)), (5)

with Rmin <= x <= Rmax, q is the number of steps,
and ”[]” denotes the integer part notation. This func-

tion as well as the sigmoid are illustrated in Figure
6 with 50 steps (q = 50).

Figure 6. A staircase function with 50 steps that
approximates a sigmoid function.

A DIMLP network with staircase activation
functions having one step is an IMLP network. As a
result, each hidden neuron belonging to the first hid-
den layer of DIMLPs defines q virtual hyperplanes
(cf. Figure 3 with q = 1). Thus, rule extraction can
be performed by an algorithm whose purpose is to
determine whether virtual hyperplanes becomes ef-
fective or not.

3.2.1 Rule extraction

A distinctive feature of our rule extraction tech-
nique is that fidelity, which is the degree of match-
ing between network classifications and rules’ clas-
sifications is equal to 100%, with respect to the
training set. Here we describe the general idea be-
hind the rule extraction algorithm, since more de-
tails are described in [5]. The relevance of a dis-
criminative hyperplane corresponds to the number
of points viewing this hyperplane as the transition
to a different class. In the first step of the rule ex-
traction algorithm the relevance of discriminative
hyperplanes is estimated from all training examples
and DIMLP responses.

Once the relevance of discriminative hyper-
planes has been established a special decision tree is
built according to the strongest relevant hyperplane
criterion. In other terms, during tree induction in a
given region of the input space the hyperplane hav-
ing the largest number of points viewing this hyper-
plane as the transition to a different class is added
to the tree.
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Figure 5. An IMLP network unable to correctly
classify a problem of two classes, since with a step
function in the hidden layer the activation values of

h1 and h2 define a XOR problem.
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Each path between the root and a leaf of the ob-
tained decision tree corresponds to a rule. At this
stage rules are disjointed and generally their num-
ber is large, as well as their number of antecedents.
Therefore, a pruning strategy is applied to all rules
according to the most enlarging pruned antecedent
criterion. The use of this heuristic involves that at
each step the pruning algorithm prunes the rule an-
tecedent which most increases the number of cov-
ered examples without changing DIMLP classifica-
tions. Note that at the end of this stage, rules are
no longer disjointed and unnecessary rules are re-
moved.

When it is no longer possible to prune any an-
tecedent or any rule, again, to increase the num-
ber of covered examples by each rule all thresh-
olds of remaining antecedents are modified accord-
ing to the most enlarging criterion. More precisely,
for each attribute new threshold values are deter-
mined according to the list of discriminative hyper-
planes. At each step, the new threshold antecedent
which most increases the number of covered exam-
ples without altering DIMLP classifications is re-
tained.

The general algorithm is summarized as:

1 Determine relevance of discriminant hyper-
planes using available examples

2 Build a decision tree according to the highest
relevant hyper-plane criterion.

3 Prune rule antecedents according to the most en-
larging pruned antecedent criterion.

4 Prune unnecessary rules.

5 Modify antecedent thresholds according to the
most enlarging criterion.

3.2.2 Training algorithm

Training is carried out with the use of a back-
propagation algorithm minimizing the Sum Squared
Error function (SSE)

SSE =
1
2 ∑

p
∑

i
(tpi −opi)

2, (6)

with p related to training examples and i related to
output neurons. With the use of the staircase activa-
tion function the SSE is not differentiable. Thus, we

introduced a training algorithm exploiting the fact
that with a sufficient number of steps the SSE values
calculated with staircase functions is very close to
that calculated with sigmoid functions. Specifically,
during training the gradient is determined in all the
layers with the use of sigmoid functions, whereas
the error related to the stopping criterion is calcu-
lated with staircase activation functions in the first
hidden layer.

3.3 Ensembles of DIMLP networks

We train ensembles of DIMLPs by bagging [22]
or arcing [23]. With bagged ensembles each neural
network has a slightly different training set. Specifi-
cally, bagging selects for each classifier a number of
samples drawn with replacement from the original
training set. As a result, some samples are absent,
while others are repeated.

Non−Linear Combination

Majority Voting Linear Combination

DIMLP

Figure 7. Examples of DIMLP ensembles:
majority voting; linear combination; and non-linear

combination.

Arcing is a boosting algorithm. In arced ensem-
bles (e.g. ensembles trained by arcing) a probability
is associated to each sample. The selection of train-
ing samples for each DIMLP network is performed
according to these probabilities. For the first net-
work the training samples have the same probabil-
ity. Then, after the first classifier has been trained
the probability of sample selection in a new train-
ing set is increased for all unlearned samples and
decreased for the others.

The rule extraction technique defined for single
DIMLPs can be used for several combined classi-
fiers, since an ensemble of DIMLP networks can be
viewed as a single DIMLP network with one more
hidden layer for which weight values between dif-
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ferent networks are equal to zero. Figure 7 illus-
trates three different type of DIMLP ensembles.

3.4 DIMLP networks trained by deep
learning

We basically use stacked autoencoders as the
basic mechanism to obtain deep DIMLPs, denoted
as DIMLP-D. The first autoencoder has three layers,
the output layer corresponding to the input layer.
After the training of the first autoencoder, the third
layer as well as the incoming weights are discarded
and then a second autoencoder can be defined with
an input layer corresponding to the hidden layer of
the previous autoencoder. The second autoencoder
is different from the first, since it has full connec-
tivity between the input layer and the hidden layer.
The process can be repeated an arbitrary number
of times with autoencoders having full connectiv-
ity between successive layers. Figure 8 illustrates
the first autoencoder of DIMLP-D.

1

1
first bias virtual unit

second bias

Input Layer

Input Layer

Figure 8. A first autoencoder to train DIMLP-D.

After the last autoencoder has been defined the
whole deep network is retrained with respect to the
target values of the classification problem. Finally,
rule extraction is performed with the same algo-
rithm presented in Section 3.2.1, since it can be ap-
plied to any DIMLP architecture having any num-
ber of hidden layers.

Denoising autoencoders represent a variant in
which the basic idea is to force the hidden layer to
create more robust features [24]. Specifically, the
autoencoder is trained to reconstruct the input from
a corrupted version of it. Basically, the corruption
process randomly sets some input components to
zero. The proportion of corrupted inputs is often
defined between 30%-50%.

4 Experiments

We applied DIMLP networks to two classifica-
tion problems in the medical domain and a classifi-
cation task related to computer vision. Deep learn-
ing was only applied to the last problem, since it has
been observed that appropriate classification tasks
for deep learning are much more likely to occur
in computer vision, speech recognition and natural
language processing. The three datasets we used
are available publicly:

– Thyroid dataset: UCI archive:
http://archive.ics.uci.edu/ml/

– Wisconsin Breast Cancer dataset: UCI archive:
http://archive.ics.uci.edu/ml/

– MNIST dataset:
http://yann.lecun.com/exdb/mnist/

Learning parameters were set to default values
for both DIMLP ensembles and DIMLPs trained by
deep learning. The values are:

– learning parameter: η = 0.1;

– momentum: µ = 0.6;

– Flat Spot Elimination: FSE = 0.01;

– number of stairs in the stair function: q = 50.

To facilitate visualization with respect to the
MNIST problem, for each rule we calculated the
average of pixel values for all the covered samples.
Specifically, inputs are represented by a 2D matrix;
given a rule Ri, and a set Ai containing ki train-
ing samples xl

jk activating this rule, the centroid Ci
jk

( j,k = 1, . . .D)1 associated to rule Ri is

Ci
jk =

1
ki
·

ki

∑
n=1

xn
jk; xn

jk ∈ Ai. (7)

Rule antecedents are represented by colored
dots on pictures of rule centroids. Specifically, for
the sake of simplicity green dots are used to rep-
resent antecedents given as ai > ti, ai being a rule
antecedent and ti ∈ IR being a threshold. Similarly,
red dots are used to characterize antecedents given
as a j ≤ t j. When a rule antecedent is both red and
green it is represented in yellow.

1D is equal to 28 for MNIST.
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4.1 Thyroid dataset

The Thyroid dataset [25] is split into training
and testing sets of 3772 and 3428 examples, re-
spectively. Three classes are defined: “Normally
Functioning” (Class 1); “Primary Hypothyroidism”
(Class 2); “Primary Hyperthyroidism” (Class 3).
On the overall 7200 samples of the training and test-
ing sets, 92.6% are classified as normal, 5.1% as hy-
pothyroidism, and 2.3% as hyperthyroidism. Each
data sample has 21 attributes with respectively 15
binary and 6 continuous inputs.

Our best result was obtained with a DIMLP ar-
chitecture of 21 inputs, 42 neurons in a unique hid-
den layer and three output neurons. We trained
ensembles of three networks trained by bagging
(DIMLP-B). Early-stopping was made possible by
out-of-bag samples. The obtained training accuracy
was equal to 99.95% and the predictive accuracy of
rules reached 99.50%.

In Table 1 we report the details of two extracted
rulesets. The first is the best in terms of rules’
predicitive accuracy, while the second presents less
rules with lower predicitve accuracy, but still com-
petitive with state of the art results. Fidelity is re-
ported in this table as the degree of matching be-
tween rule classifications and network responses on
the testing test (fidelity on the training set is 100%).
In the fifth row is shown the predictive accuracy of
rules when a neural network model agrees with the
extracted rules. The number of default rule activa-
tions reported in the last row represents how many
testing samples were uncovered. Note that in such a
situation, the classification is provided by the neural
network.
Rule 1: (¬x3) (¬x8) (x17 > 0.0061) (x18 < 0.0336) (x19 <
0.1510) (x21 > 0.0645) Class 2

Rule 2: (¬x3) (¬x8) (x17 > 0.0061) (x19 < 0.1510) (x20 >
0.0935) (x21 > 0.0645) Class 2

Rule 3: (¬x8) (x17 > 0.0061) (x18 < 0.0269) (x21 < 0.0645) Class 3

Rule 4: (x17 > 0.0165) (x19 > 0.0529) (x21 < 0.0645) Class 3

Default: Class 1

Figure 9. An example of ruleset extracted from the
Thyroid dataset. The accuracy on the training set is

99.95%, while on the testing set it is equal to
99.50%.

The first ruleset is shown in Figure 9, while Fig-
ure 10 illustrates the second one. Note that in order
to compare our results to the state of the art we re-

placed the rules of the majority class (Class 1) by
the default rule.
Rule 1: (¬x3) (¬x8) (x17 > 0.0061) (x19 < 0.1510) (x21 > 0.0648)
Class 2

Rule 2: (x17 > 0.0061) (x21 < 0.0645) Class 3

Default: Class 1

Figure 10. An example of ruleset extracted from
the Thyroid dataset. The accuracy on the training

set is 99.79%, while on the testing set it is equal to
99.36%.

Table 2 compares the results obtained by the
rules generated from DIMLP ensembles with state
of the art results. Note in the last row that for al-
most the same level of performance we obtained
rules with a lower number of antecedents.

4.2 Wisconsin Breast Cancer dataset

This dataset on breast cancer classification con-
tains 699 samples of two classes: benign and ma-
lignant. We removed 16 cases with missing values,
hence the total number of samples is equal to 683.
Each case is described by nine attributes with inte-
ger values in the range [1, . . . ,10] and a binary class
label.

We performed ten repetitions of stratified
ten fold cross-validation trials with ensembles
of DIMLPs by arcing (DIMLP-A) and bagging
(DIMLP-B). The default number of neurons in the
first hidden layer was equal to the number of input
neurons (9) and the number of neurons in the sec-
ond hidden layer of the ensembles was empirically
defined to be equal to 100.

Ensembles were defined with 25 networks,
since it has been observed many times that for bag-
ging and arcing the most substantial improvement
in accuracy is achieved with the first 25 networks
[5]. Finally, we used early-stopping with out-of-bag
samples. Table 3 shows average results and stan-
dard deviations. Note that the default rule class here
is not replaced by the majority class. The compari-
son with state of the art results is shown in Table 4.

The average predictive accuracy obtained by the
rules extracted from DIMLP-B is similar to that re-
ported in [27]. Note that it is difficult to compare
the complexity of rules, since many rule extraction
techniques do not report the average number of gen-
erated antecedents.
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Table 1. Results obtained with DIMLP-B ensembles on the Thyroid dataset. Best predictive accuracy of
rules and lowest complexity of rules are in bold.

DIMLP-B (best rules acc.) DIMLP-B (less rules)
Training accuracy 99.95 99.79
Predictive accuracy 99.21 99.04
Fidelity 99.64 99.44
Predictive accuracy of rules 99.50 99.36
Predictive accuracy of rules 2 99.53 99.47
Number of rules 5 3
Avg. number of antecedents per rule 3.8 2.3
Avg. number of examples per rule 754.4 1257.3
Number of default rule activations 1 0

Table 2. Comparison of rule extraction algorithms for the Thyroid classification problem. Best accuracy of
rules and lowest complexity of rules are in bold.

Tr. Acc. Pred. Acc. #Rules Avg. #Ant.
Continuous Re-RX [26] 99.05 98.51 5 2.8
C-MLP2LN [27] 99.89 99.36 4 2.5
SSV [27] 99.79 99.33 3 2.7
Fuzzy clustering with ellipsoids [28] 98.10 96.79 25 –
DIMLP-B (1) 99.95 99.50 5 3.8
DIMLP-B (2) 99.79 99.36 3 2.3

Table 3. Ten fold cross-validation results obtained with DIMLP-A and DIMLP-B ensembles on the Breast
Cancer dataset. Best predictive accuracy of rules and lowest complexity of rules are in bold.

DIMLP-A DIMLP-B
Training accuracy 100.0 (0.0) 98.0 (0.1)
Predictive accuracy 96.6 (0.3) 97.1 (0.2)
Fidelity 98.9 (0.3) 98.8 (0.4)
Predictive accuracy of rules 96.2 (0.3) 96.5 (0.3)
Predictive accuracy of rules 2 96.9 (0.3) 97.4 (0.2)
Number of rules 25.2 (0.6) 12.5 (0.5)
Avg. number of antecedents per rule 3.6 (0.1) 2.7 (0.0)
Avg. number of examples per rule 67.1 (3.5) 185.1 (6.4)
Number of default rule activations 0.4 (0.1) 0.5 (0.1)

Table 4. Comparison of rule extraction algorithms for the Wisconsin Breast Cancer classification problem,
based on 10-fold cross-validation. Best predictive accuracy of rules and lowest complexity of rules are in

bold.

Rule extraction technique Tr. Acc. Pred. Acc. #Rules Avg. #Ant.
SSV (10 CV) [27] – 96.3 (0.2) 3 –
FSM (10 CV) [27] – 96.5 12 –
MINERVA (10 CV) [29] – 94.5 (1.5) 4.2 3.3
NeuroLinear + GRG (10 CV) [30] – 96.0 2 –
Re-RX + J48graft (10 x 10 CV) [31] 96.3 (1.8) 95.8 (1.6) 4.8 1.7
DIMLP-A (10 x 10 CV) 100.0 (0.0) 96.2 (0.3) 25.2 3.6
DIMLP-B (10 x 10 CV) 98.0 (0.1) 96.5 (0.3) 12.5 2.7
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4.3 Mnist dataset

The MNIST data set is a standard dataset for
hand-written digit classification [32]. Digits be-
tween zero and nine are represented by 784 inputs
with normalized gray levels. The training and test-
ing sets of the MNIST dataset are fixed and con-
tain 60000 and 10000 samples, respectively. Since
the rule extraction algorithm applied to DIMLPs is
polynomial in terms of algorithmic complexity, it
would take too much time to obtain a ruleset from
such a high dimensional dataset. However, it is
possible to extract rules from smaller classification
sub-problems; for instance we can define binary
or ternary classification problems from the whole
MNIST dataset.

We performed four series of experiments.
Firstly, we trained DIMLP networks on digits 5
and 8, in order to compare our extracted rules with
those generated in another work [33]. Secondly,
we performed experiments with classification sub-
problems of two and three classes to determine the
predictive accuracy for the whole MNIST dataset.
In the third series of experiments the purpose was to
distinguish digit 0 from the others and to compare
rules generated from deep DIMLPs to those ob-
tained in [17]. Finally, deep DIMLPs were trained
on the whole dataset to show that they can reach
predictive accuracy similar to that obtained in the
state of the art. For illustrative purposes a ruleset
was generated from a training set of reduced in-
put dimensionality and a small ensemble of arced
DIMLPs.

4.3.1 Recognition of digits 5 and 8

With the use of Support Vector Machines
Cherkassky and Dhar generated rules from a binary
classification problem related to digits 5 and 8 [33].
For these two digits we extracted from the whole
MNIST dataset 11272 training examples and 1866
testing examples, respectively. The default number
of neurons of DIMLP ensembles in the first hidden
layer was equal to the number of input neurons and
the number of neurons in the second hidden layer
was empirically defined to be equal to five.

The architecture for deep learning was deter-
mined empirically after a few preliminary experi-
ments. The retained architecture was: 784 input
neurons, 784 neurons in the first hidden layer, 200

in the second, 100 in the third, 30 in the fourth and 2
output neurons. Autoencoders were trained for 50
epochs and the whole deep network was retrained
for 100 epochs. For all the models, table 5 shows
average results and standard deviations of DIMLP
ensembles and DIMLPs trained by deep learning.

It turned out that rule complexity in terms
of number of extracted rules and number of an-
tecedents per rule was much higher for arced en-
sembles and deep learning, on average. Moreover,
higher complexity involved lower fidelity, but also
lower predictive accuracy of the rules with respect
to the neural networks they represent. The reason is
that the expression power of symbolic rules is much
more limited than that of neural networks. How-
ever, when rules and DIMLP classifications agreed
the predictive accuracy was very high. For instance,
for DIMLP-B networks in 98.83% of the testing
samples the average predictive accuracy of the rules
was 99.0%. Hence, rules did not explain testing
samples for 28.1 times (1.17/100 · 1866 = 28.1),
on average. Due to default rule activations, inter-
pretable rules did not support another 13.1 testing
samples. Thus, for DIMLP-B networks the pro-
portion of testing samples not covered by any rule
was equal to 2.2%, while it was equal to 7.0% for
DIMLP-D. Overall, the more complex a model the
more difficult to approximate it with rules.

Cherkassky and Dhar generated rules from
SVMs with the ALBA algorithm [34] for digits 5
and 8. Based on 10 trials, their best result was
achieved with the RBF-kernel. The average pre-
dictive accuracy was equal to 98.77%, while the
average predictive accuracy of the generated rules
was equal to 93.52%. As a matter of fact, the num-
ber of extracted rules was not reported. Note that
the average predictive accuracy of the rules we ob-
tained with DIMLP ensembles and DIMLP-D are:
98.24%; 96.00%; and 96.06%, respectively. It is
worth noticing that when the rules agreed with the
models (for more than 96% of the testing samples)
our accuracies were 99.00%, 99.25% and 99.57%,
respectively.

Figure 11 depicts 16 centroids out of 431 cal-
culated from the 16 rules extracted from one of the
bagged ensembles. On these centroid pictures, rule
antecedents are represented by colored dots. The
first 6 centroids on the first row are related to rules
covering more than 1000 samples of the training
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Table 5. Results obtained with DIMLP networks on the MNIST dataset for digits 5 and 8.

DIMLP-B DIMLP-A DIMLP-D
Training Accuracy 99.53 (0.04) 100.00 (0.00) 99.99 (0.01)
Predictive Accuracy 98.61 (0.09) 98.99 (0.07) 99.54 (0.10)
Fidelity 98.83 (0.21) 96.47 (0.45) 96.43 (0.09)
Predictive Accuracy of Rules 98.24 (0.17) 95.99 (0.55) 96.06 (0.83)
Predictive Accuracy of Rules 2 99.00 (0.05) 99.23 (0.12) 99.57 (0.09)
Number of Rules 262.1 (27.1) 885.8 (116.2) 879.4 (242.7)
Number of Antecedents per Rule 7.4 (0.1) 7.5 (0.3) 7.7 (0.2)
Number of Examples per Rule 194.6 (19.2) 56.6 (10.0) 61.6 (31.2)
Number of Default Rule Activations 13.1 (3.2) 63.8 (14.0) 63.2 (26.9)

set. Centroids are shown in descending order with
respect to the number of covered samples in the
training set. Typically, an example activates several
rules, since rules are not exclusive. Thus, with re-
spect to the duality of representation between rules
and centroids a digit picture is represented by sev-
eral centroids. Note that many centroids are very
similar, since they cover many similar digits. This
is also representative of redundant knowledge rep-
resentations typically found in neural networks.

Red dots tend to appear in dark regions of digit
pictures, since the corresponding rule antecedents
are true for pixels below given thresholds. On the
contrary, green dots tend to be located in the bright
areas of the digits, because rule antecedents are true
for pixels above given thresholds, thus detecting the
presence of digits. The first rule (top left of Fig-
ure 11) covers 1705 training samples, two green
dots are on the surface of the number and many red
dots are around the right upper part. Class of digit
5 is very often characterized by a majority of red
dots, thus a majority of rule antecedents detecting
absence of intensity. For instance centroids 6, 7,
and 8 belong to the class of digit 5 and have a large
number of red dots in the holes around the shape of
the bright area. Class digit 8 has a tendency to be
detected by more green dots than digit 5.

Figure 12 is like Figure 11, but for a network
trained by deep learning. With respect to the ob-
servations raised for bagged DIMLPs we do not see
major differences.

Qualitatively, no clear difference in the strat-
egy of classification resulted between DIMLP-D
and the ensembles. The main difference between
DIMLP-B and DIMLP-D resides in the number of
rules, which is substantially greater with DIMLP-

D. Between DIMLP-D and DIMLP-A the number
of extracted rules, as well as the number of an-
tecedents per rule is not statistically different.

Figures 13, 14, and 15 illustrates examples for
which rules and networks disagree on the classi-
fication decision. Specifically, the left sub-Figure
depicts an example that is correctly classified by
DIMLP-D, while the right sub-Figure corresponds
to the centroid of the activated rule (yielding a
wrong classification). As you can see, the five
features are not sufficiently specialized to disam-
biguate the digit belonging to class 5 and the cen-
troid belonging to class 8. With respect to the lat-
ter, if the neural network had created more features
(e.g. rule antecedents) in different areas close to the
borders, the wrong classification would be likely to
vanish. In fact, the improved features would be-
come much more specific to class 8 and then digit 5
would not be covered by it.

Figure 13. The sample at left is correctly classified
by DIMLP-D, but it is covered on the right by a

rule of the wrong class (a yellow dot represents a
dot which is both red and green).

Figure 14. A second case for which the sample at
left is correctly classified by DIMLP-D, but it is
covered on the right by a rule of the wrong class.
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Table 5. Results obtained with DIMLP networks on the MNIST dataset for digits 5 and 8.

DIMLP-B DIMLP-A DIMLP-D
Training Accuracy 99.53 (0.04) 100.00 (0.00) 99.99 (0.01)
Predictive Accuracy 98.61 (0.09) 98.99 (0.07) 99.54 (0.10)
Fidelity 98.83 (0.21) 96.47 (0.45) 96.43 (0.09)
Predictive Accuracy of Rules 98.24 (0.17) 95.99 (0.55) 96.06 (0.83)
Predictive Accuracy of Rules 2 99.00 (0.05) 99.23 (0.12) 99.57 (0.09)
Number of Rules 262.1 (27.1) 885.8 (116.2) 879.4 (242.7)
Number of Antecedents per Rule 7.4 (0.1) 7.5 (0.3) 7.7 (0.2)
Number of Examples per Rule 194.6 (19.2) 56.6 (10.0) 61.6 (31.2)
Number of Default Rule Activations 13.1 (3.2) 63.8 (14.0) 63.2 (26.9)

set. Centroids are shown in descending order with
respect to the number of covered samples in the
training set. Typically, an example activates several
rules, since rules are not exclusive. Thus, with re-
spect to the duality of representation between rules
and centroids a digit picture is represented by sev-
eral centroids. Note that many centroids are very
similar, since they cover many similar digits. This
is also representative of redundant knowledge rep-
resentations typically found in neural networks.

Red dots tend to appear in dark regions of digit
pictures, since the corresponding rule antecedents
are true for pixels below given thresholds. On the
contrary, green dots tend to be located in the bright
areas of the digits, because rule antecedents are true
for pixels above given thresholds, thus detecting the
presence of digits. The first rule (top left of Fig-
ure 11) covers 1705 training samples, two green
dots are on the surface of the number and many red
dots are around the right upper part. Class of digit
5 is very often characterized by a majority of red
dots, thus a majority of rule antecedents detecting
absence of intensity. For instance centroids 6, 7,
and 8 belong to the class of digit 5 and have a large
number of red dots in the holes around the shape of
the bright area. Class digit 8 has a tendency to be
detected by more green dots than digit 5.

Figure 12 is like Figure 11, but for a network
trained by deep learning. With respect to the ob-
servations raised for bagged DIMLPs we do not see
major differences.

Qualitatively, no clear difference in the strat-
egy of classification resulted between DIMLP-D
and the ensembles. The main difference between
DIMLP-B and DIMLP-D resides in the number of
rules, which is substantially greater with DIMLP-

D. Between DIMLP-D and DIMLP-A the number
of extracted rules, as well as the number of an-
tecedents per rule is not statistically different.

Figures 13, 14, and 15 illustrates examples for
which rules and networks disagree on the classi-
fication decision. Specifically, the left sub-Figure
depicts an example that is correctly classified by
DIMLP-D, while the right sub-Figure corresponds
to the centroid of the activated rule (yielding a
wrong classification). As you can see, the five
features are not sufficiently specialized to disam-
biguate the digit belonging to class 5 and the cen-
troid belonging to class 8. With respect to the lat-
ter, if the neural network had created more features
(e.g. rule antecedents) in different areas close to the
borders, the wrong classification would be likely to
vanish. In fact, the improved features would be-
come much more specific to class 8 and then digit 5
would not be covered by it.

Figure 13. The sample at left is correctly classified
by DIMLP-D, but it is covered on the right by a

rule of the wrong class (a yellow dot represents a
dot which is both red and green).

Figure 14. A second case for which the sample at
left is correctly classified by DIMLP-D, but it is
covered on the right by a rule of the wrong class.
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Figure 11. First 16 centroids of a bagged ensemble with rule antecedents represented by colored dots.

Figure 12. First 16 centroids and rule antecedents of a DIMLP network trained by deep learning.
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Figure 15. A third case for which the sample at
left is correctly classified by DIMLP-D, but it is
covered on the right by a rule of the wrong class.

Figure 16 represents an example of wrong
classification, but for which rules and DIMLP-D
agree. Finally, Figure 17 illustrates an example in
which the activated rule is correct, but with wrong
DIMLP-D classification.

Figure 16. The sample at left is misclassified by
both DIMLP-D and the activated rule on the right.

Figure 17. The sample at left is correctly classified
by the activated rule on the right, but wrongly

classified by DIMLP-D.

To decrease the number of extracted rules from
deep DIMLPs and bagged DIMLPs, during the
learning phase we only used the first 1000 sam-
ples of the training set. The DIMLP architectures
were identical to those defined above. For deep
DIMLPs the only difference was that when the
whole network was retrained by supervised learn-
ing, we stopped learning after three epochs. For
bagged DIMLPs the training of each single network
was stopped after it went above 97% accuracy on
the training set of 1000 samples. Results are shown
in table 6. Compared to previous experiments, the
number of rules of deep DIMLPs was reduced by a
factor equal to 13.3, while the predictive accuracy
of rules decreased to 93.68%, on average. By sacri-
ficing predictive accuracy we clearly obtained lower
complexity rulesets, especially for bagged DIMLPs
with 47.0 generated rules, on average.

Figure 18 illustrates all the centroids generated
from a bagged ensemble. We clearly see that the
created features are simpler than those obseved in
more accurate rulesets.

4.3.2 Combinations of binary and ternary clas-
sification sub-problems

Generally, a classification problem of more than
two classes can be transformed into several binary
sub-problems. The One-Against-All decomposi-
tion defines a binary classification problem in which
the purpose is to distinguish a class versus all the
others. With ten classes we obtain ten binary clas-
sification problems. Another method consists in
taking into account all possible combinations of bi-
nary classification tasks. This is sometimes referred
as Tournament Learning; hence, with ten classes
we obtain 45 classification sub-problems. For each
sample all the classifiers are combined in an ensem-
ble to produce a classification related to the most
activated class.

A clear advantage of this framework is that for
the MNIST problem each classifier is trained with
approximately 20% of the original training set, thus
training and rule extraction is faster. Furthermore,
the 45 classifiers can be trained in parallel. The
same approach can be repeated by considering clas-
sification sub-problems of three classes for a total of
120 ternary sub-problems.

For these experiments, we used DIMLP-Ds
with the same architectures described in Section
4.3.1. Table 7 illustrates the average predictive ac-
curacy results obtained by aggregating 45 binary
classifiers, as well as 120 ternary classifiers over
five trials. Note that rule extraction from ensembles
of 45 or 120 DIMLP-Ds was not performed, since
it would have been too long to execute it.

Figures 19 and 20 illustrate the first 25 centroids
and their rule antecedents represented by colored
dots.

Table 8 summarizes the results obtained by
eight DIMLP-Ds trained to recognize three digit
classes, including digit 5 and digit 8. With respect
to binary problems although the number of training
samples increased, the average number of extracted
rules decreased from 879.4 to 678.0, while the av-
erage fidelity increased from 96.43% to 97.46%.
Finally, the predictive accuracy of rules increased
from 96.06% to 96.95%
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Figure 15. A third case for which the sample at
left is correctly classified by DIMLP-D, but it is
covered on the right by a rule of the wrong class.

Figure 16 represents an example of wrong
classification, but for which rules and DIMLP-D
agree. Finally, Figure 17 illustrates an example in
which the activated rule is correct, but with wrong
DIMLP-D classification.

Figure 16. The sample at left is misclassified by
both DIMLP-D and the activated rule on the right.

Figure 17. The sample at left is correctly classified
by the activated rule on the right, but wrongly

classified by DIMLP-D.

To decrease the number of extracted rules from
deep DIMLPs and bagged DIMLPs, during the
learning phase we only used the first 1000 sam-
ples of the training set. The DIMLP architectures
were identical to those defined above. For deep
DIMLPs the only difference was that when the
whole network was retrained by supervised learn-
ing, we stopped learning after three epochs. For
bagged DIMLPs the training of each single network
was stopped after it went above 97% accuracy on
the training set of 1000 samples. Results are shown
in table 6. Compared to previous experiments, the
number of rules of deep DIMLPs was reduced by a
factor equal to 13.3, while the predictive accuracy
of rules decreased to 93.68%, on average. By sacri-
ficing predictive accuracy we clearly obtained lower
complexity rulesets, especially for bagged DIMLPs
with 47.0 generated rules, on average.

Figure 18 illustrates all the centroids generated
from a bagged ensemble. We clearly see that the
created features are simpler than those obseved in
more accurate rulesets.

4.3.2 Combinations of binary and ternary clas-
sification sub-problems

Generally, a classification problem of more than
two classes can be transformed into several binary
sub-problems. The One-Against-All decomposi-
tion defines a binary classification problem in which
the purpose is to distinguish a class versus all the
others. With ten classes we obtain ten binary clas-
sification problems. Another method consists in
taking into account all possible combinations of bi-
nary classification tasks. This is sometimes referred
as Tournament Learning; hence, with ten classes
we obtain 45 classification sub-problems. For each
sample all the classifiers are combined in an ensem-
ble to produce a classification related to the most
activated class.

A clear advantage of this framework is that for
the MNIST problem each classifier is trained with
approximately 20% of the original training set, thus
training and rule extraction is faster. Furthermore,
the 45 classifiers can be trained in parallel. The
same approach can be repeated by considering clas-
sification sub-problems of three classes for a total of
120 ternary sub-problems.

For these experiments, we used DIMLP-Ds
with the same architectures described in Section
4.3.1. Table 7 illustrates the average predictive ac-
curacy results obtained by aggregating 45 binary
classifiers, as well as 120 ternary classifiers over
five trials. Note that rule extraction from ensembles
of 45 or 120 DIMLP-Ds was not performed, since
it would have been too long to execute it.

Figures 19 and 20 illustrate the first 25 centroids
and their rule antecedents represented by colored
dots.

Table 8 summarizes the results obtained by
eight DIMLP-Ds trained to recognize three digit
classes, including digit 5 and digit 8. With respect
to binary problems although the number of training
samples increased, the average number of extracted
rules decreased from 879.4 to 678.0, while the av-
erage fidelity increased from 96.43% to 97.46%.
Finally, the predictive accuracy of rules increased
from 96.06% to 96.95%

CHARACTERIZATION OF SYMBOLIC RULES EMBEDDED IN . . .

Table 6. Results obtained with less accurate deep DIMLPs and bagged DIMLPs on the MNIST dataset for
digits 5 and 8.

DIMLP-B DIMLP-D
Predictive Accuracy 94.56 (0.15) 95.25 (0.71)
Fidelity 96.91 (0.50) 95.47 (1.31)
Predictive Accuracy of Rules 93.44 (0.42) 93.68 (0.81)
Predictive Accuracy of Rules 2 95.40 (0.33) 96.57 (0.67)
Number of Rules 47.0 (5.2) 66.2 (6.1)
Number of Antecedents per Rule 4.7 (0.2) 5.3 (0.2)
Number of Default Rule Activations 27.0 (12.1) 45.7 (15.5)

Figure 18. All the centroids generated from a bagged ensemble with rule antecedents represented by
colored dots. The predictive accuracy of the ensemble is 94.69%, while for the rules it is equal to 93.57%.

Table 7. DIMLP-D results of average predictive accuracy for ensembles of binary and ternary
sub-classifiers.

Sub-problems of two classes Sub-problems of three classes
Pred. Acc. 98.11 (0.11) 98.27 (0.05)
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Figure 19. First 25 centroids and rule antecedents for a DIMLP-D trained on digits 1, 5, and 8.

Table 8. Average results obtained from eight DIMLP-Ds trained on eight ternary classification
sub-problems including class of digits 5 and 8.

DIMLP-D
Training Accuracy 99.47 (0.62)
Predictive Accuracy 98.77 (0.57)
Fidelity 97.46 (0.80)
Predictive Accuracy of Rules 96.95 (0.87)
Predictive Accuracy of Rules 2 99.18 (0.35)
Number of Rules 678.0 (148.6)
Number of Antecedents per Rule 8.61 (0.46)
Number of Examples per Rule 97.7 (21.1)
Number of Default Rule Activations 34.5 (6.7)
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Figure 19. First 25 centroids and rule antecedents for a DIMLP-D trained on digits 1, 5, and 8.

Table 8. Average results obtained from eight DIMLP-Ds trained on eight ternary classification
sub-problems including class of digits 5 and 8.

DIMLP-D
Training Accuracy 99.47 (0.62)
Predictive Accuracy 98.77 (0.57)
Fidelity 97.46 (0.80)
Predictive Accuracy of Rules 96.95 (0.87)
Predictive Accuracy of Rules 2 99.18 (0.35)
Number of Rules 678.0 (148.6)
Number of Antecedents per Rule 8.61 (0.46)
Number of Examples per Rule 97.7 (21.1)
Number of Default Rule Activations 34.5 (6.7)

CHARACTERIZATION OF SYMBOLIC RULES EMBEDDED IN . . .

Figure 20. First 25 centroids and rule antecedents for a DIMLP-D trained on digits 3, 5, and 8.
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4.3.3 Recognition of digit 0

Zilke applied a deep architecture to distinguish
digit 0 from all other numbers [17]. Specifically,
from the whole MNIST dataset all the samples of
class digit 0 were included in this binary classifi-
cation problem. As reported in [17], the training
and testing sets include 12056 and 2195 samples,
respectively. Note that the number of samples rep-
resenting digits different from digit 0 corresponded
approximately to the number of digits of class 0,
after random selection.

For deep DIMLPs we defined the architecture
used in Sect. 4.4.1. We performed ten trials with
ten different training and testing sets, since digits
different from class 0 were randomly selected from
the whole MNIST dataset. Rule extraction was first
performed on the 12056 training samples and then
on the first 1500 samples, in order to generate less
symbolic rules. Note also that Zilke carried out only
a trial by extracting rules with two different sets of
parameters. Results are depicted in table 9. The
first column of results is related to rule extraction
from DIMLP-D trained with all training samples of
this binary classification problem, the second col-
umn summarizing the results obtained by DIMLP-
D trained with only 1500 samples.

We report in the last column of table 9 the re-
sults obtained in [17] related to two rulesets. Essen-
tially, extracted rules belong to class 0 and contain
about 200 antecedents. Our extracted rulesets, be-
ing based on ten different datasets present 253.6 an-
tecedents for the two classes, on average (about half
of them for class 0). However, our rules’ predictive
accuracy is much higher.

4.3.4 Whole MNIST dataset

We performed two series of experiments using
all the samples of the MNIST dataset (60000 train-
ing samples and 10000 testing samples). In the
first series we wanted to determine whether a deep
DIMLP architecture is able to reach a predictive ac-
curacy similar to that obtained in the state of the
art. As reported in [32], without using supplemen-
tary distorted training samples the best predictive
accuracy for a deep MLP was 98.4%.

After a few preliminary experiments we defined
a DIMLP architecture with: 784 input neurons, 784
neurons in the first hidden layer, 1000 in the second,

1000 in the third, 1000 in the fourth and 10 out-
put neurons. Stacked denoising autoencoders were
trained for only 2 epochs and the whole deep net-
work was retrained for 40 epochs. On ten trials
our average predictive accuracy was 98.63% ±0.04.
Hence, although the DIMLP model represents a
particular MLP architecture it yields very accurate
results.

Since the previous DIMLP architecture presents
more than three million weights it could require a
long time to generate symbolic rules. As a conse-
quence, in a second series of experiments we de-
cided to use arced DIMLP ensembles. To reduce
rule extraction execution time we downsampled the
MNIST dataset by replacing 2x2 block pixels by
their average. Hence, the data dimensionality was
reduced by a factor equal to four. As shown in table
10, our best results were obtained with arced en-
sembles of 100 DIMLP networks having 196 neu-
rons in the first hidden layer, 100 neurons in the
second hidden layer and ten neurons in the output
layer.

Another input reduction was performed with a
resulting number of inputs equal to 121. Specif-
ically, we replaced 3x3 pixel blocks close to the
corners by their average. Getting away from the
corners, the average was calculated for 2x2 blocks.
The number of neurons of arced ensembles in the
second hidden layer was equal to 150.

To make it possible to generate rules from the
whole MNIST dataset we used a small ensemble
of three DIMLP networks having 121 input neu-
rons. Not surprisingly, the predictive accuracy of
this small ensemble was lower than the average pre-
dictive accuracy obtained by full ensembles (97.97
versus 98.36± 0.03). Figure 21 illustrates the first
64 centroids of the generated ruleset.

Tran and Garcez generated symbolic rules from
Deep Beliefs Networks (DBN) based on stacked Re-
stricted Boltzman Machines [16]. They trained a
network on the whole MNIST dataset and obtained
a predictive accuracy of 97.63%. They generated an
unknown number of rules with predictive accuracy
equal to 93.97%. The number of antecedents per
rule was equal to the input dimensionality, which is
784. We present our results in Table 11. Note that
the results depicted in the first column are those re-
lated to the 64 centroids illustrated in Figure 21. We
varied the number of extracted rules from 65 to 400
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4.3.3 Recognition of digit 0

Zilke applied a deep architecture to distinguish
digit 0 from all other numbers [17]. Specifically,
from the whole MNIST dataset all the samples of
class digit 0 were included in this binary classifi-
cation problem. As reported in [17], the training
and testing sets include 12056 and 2195 samples,
respectively. Note that the number of samples rep-
resenting digits different from digit 0 corresponded
approximately to the number of digits of class 0,
after random selection.

For deep DIMLPs we defined the architecture
used in Sect. 4.4.1. We performed ten trials with
ten different training and testing sets, since digits
different from class 0 were randomly selected from
the whole MNIST dataset. Rule extraction was first
performed on the 12056 training samples and then
on the first 1500 samples, in order to generate less
symbolic rules. Note also that Zilke carried out only
a trial by extracting rules with two different sets of
parameters. Results are depicted in table 9. The
first column of results is related to rule extraction
from DIMLP-D trained with all training samples of
this binary classification problem, the second col-
umn summarizing the results obtained by DIMLP-
D trained with only 1500 samples.

We report in the last column of table 9 the re-
sults obtained in [17] related to two rulesets. Essen-
tially, extracted rules belong to class 0 and contain
about 200 antecedents. Our extracted rulesets, be-
ing based on ten different datasets present 253.6 an-
tecedents for the two classes, on average (about half
of them for class 0). However, our rules’ predictive
accuracy is much higher.

4.3.4 Whole MNIST dataset

We performed two series of experiments using
all the samples of the MNIST dataset (60000 train-
ing samples and 10000 testing samples). In the
first series we wanted to determine whether a deep
DIMLP architecture is able to reach a predictive ac-
curacy similar to that obtained in the state of the
art. As reported in [32], without using supplemen-
tary distorted training samples the best predictive
accuracy for a deep MLP was 98.4%.

After a few preliminary experiments we defined
a DIMLP architecture with: 784 input neurons, 784
neurons in the first hidden layer, 1000 in the second,

1000 in the third, 1000 in the fourth and 10 out-
put neurons. Stacked denoising autoencoders were
trained for only 2 epochs and the whole deep net-
work was retrained for 40 epochs. On ten trials
our average predictive accuracy was 98.63% ±0.04.
Hence, although the DIMLP model represents a
particular MLP architecture it yields very accurate
results.

Since the previous DIMLP architecture presents
more than three million weights it could require a
long time to generate symbolic rules. As a conse-
quence, in a second series of experiments we de-
cided to use arced DIMLP ensembles. To reduce
rule extraction execution time we downsampled the
MNIST dataset by replacing 2x2 block pixels by
their average. Hence, the data dimensionality was
reduced by a factor equal to four. As shown in table
10, our best results were obtained with arced en-
sembles of 100 DIMLP networks having 196 neu-
rons in the first hidden layer, 100 neurons in the
second hidden layer and ten neurons in the output
layer.

Another input reduction was performed with a
resulting number of inputs equal to 121. Specif-
ically, we replaced 3x3 pixel blocks close to the
corners by their average. Getting away from the
corners, the average was calculated for 2x2 blocks.
The number of neurons of arced ensembles in the
second hidden layer was equal to 150.

To make it possible to generate rules from the
whole MNIST dataset we used a small ensemble
of three DIMLP networks having 121 input neu-
rons. Not surprisingly, the predictive accuracy of
this small ensemble was lower than the average pre-
dictive accuracy obtained by full ensembles (97.97
versus 98.36± 0.03). Figure 21 illustrates the first
64 centroids of the generated ruleset.

Tran and Garcez generated symbolic rules from
Deep Beliefs Networks (DBN) based on stacked Re-
stricted Boltzman Machines [16]. They trained a
network on the whole MNIST dataset and obtained
a predictive accuracy of 97.63%. They generated an
unknown number of rules with predictive accuracy
equal to 93.97%. The number of antecedents per
rule was equal to the input dimensionality, which is
784. We present our results in Table 11. Note that
the results depicted in the first column are those re-
lated to the 64 centroids illustrated in Figure 21. We
varied the number of extracted rules from 65 to 400

CHARACTERIZATION OF SYMBOLIC RULES EMBEDDED IN . . .

DIMLP-D (full) DIMLP-D (partial) DeepRED [17]
Predictive Accuracy 99.37 (0.09) 97.87 (1.46) ≈ 99.5
Fidelity 97.05 (0.45) 96.83 (0.63) ≈ 89.5 and ≈ 87.0
Predictive Accuracy of Rules 96.69 (0.45) 96.14 (0.83) ≈ 89.5 and ≈ 87.0
Predictive Accuracy of Rules 2 99.49 (0.08) 98.54 (0.84) —
Number of Rules 831.9 (30.2) 53.8 (6.2) —
Number of Antecedents 6065.9 (258.7) 253.6 (35.4) ≈ 200
Number of Default Rule Activations 308.8 (19.1) 159.4 (62.6) —

Table 9. Results obtained by deep DIMLPs trained to recognize digit 0 with full and partial training sets.

DIMLP-A (196 inputs) DIMLP-A (121 inputs)
Pred. Acc 98.39 (0.05) 98.36 (0.03)

Table 10. Results of DIMLP ensembles trained by arcing on the whole MNIST dataset after
dimensionality reduction.

Figure 21. First 64 centroids and rule antecedents for an ensemble of three networks trained on the whole
MNIST dataset.
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by ranking the list of rules according to the number
of covered samples in descending order. Overall,
we obtained more than 70 times less antecedents per
rule, with better predictive accuracy.

4.4 Summary and Discussion

On the Thyroid dataset DIMLPs trained by bag-
ging obtained very good results and very compact
rulesets. This is consistent with our previous work
in which bagging tends to reduce ruleset complex-
ity with respect to arcing [35]. In this work for the
Breast Cancer problem as well as for classification
subproblems related to MNIST, we observed a sim-
ilar trend.

On a particular subset of the MNIST dataset in-
volving digit 5 and 8, deep DIMLPs yielded more
accurate results than DIMLP ensembles, whereas
the average complexity of rules related to deep
DIMLPs was similar to that measured with arced
ensembles of DIMLPs. Moreover, the comparison
with another work on rule extraction from SVMs
trained on the same dataset was favorable to our
generated rulesets in terms of predictive accuracy.
For another binary classification problem involving
the recognition of digit 0, rules generated from deep
DIMLPs resulted more accurate than that extracted
in another work (at the same level of rule complex-
ity).

Rules generated from binary or ternary MNIST
classification sub-problems emphasized that deep
DIMLPs or ensembles developed discriminatory
features in particular digit areas. In many cases
these features detect values below a threshold,
which can be viewed as detecting the absence of
digits in areas close to the borders, rather than their
presence. Whether the one or the other does not
change anything; overall, the concomitant action of
a number of features makes it possible to perform
the classification. Although many of the generated
rule centroids look similar, they still present differ-
ences, such as small rotations (cf. digit 1 in Figure
19). Finally, for MNIST binary classification prob-
lems the complexity of rules in terms of number of
rules and number of antecedents per rule was very
similar for deep DIMLPs and ensembles of arced
DIMLPs. As a consequence, an interesting ques-
tion to elucidate in the future is whether deep learn-
ing produce in general rules similar to that extracted
from boosted ensembles.

With the whole MNIST dataset we illustrated
a trade-off between the number of generated rules,
rules accuracy and rules’ covering. Essentially, we
can control the number of extracted rules by sac-
rificing their covering. Hence, depending also on
the application domain, a user could be interested to
have at the beginning a general picture of the most
important rules (e.g. those with the highest cov-
ering). Contrary to ordered rules, unordered rules
with their respective centroids can be analyzed in-
dividually as modular pieces of knowledge. At a
latest stage, one could go further through the details
by analyzing rules with lower covering.

Conclusion

We presented a study on rule extraction from
ensembles of DIMLP networks and deep DIMLPs.
On two benchmark classification problems of med-
ical diagnosis we generated accurate rules from
DIMLP ensembles which revealed to be competi-
tive with respect to the state of the art. We trained
deep DIMLPs of four hidden layers on a benchmark
dataset in the computer vision domain.

For the MNIST dataset we first defined classi-
fication sub-problems of two or three classes. The
comparison with another work that applied rule ex-
traction to SVMs trained on digit 5 and digit 8 was
favorable to our DIMLPs deep networks. Rule ex-
traction emphasized feature detectors that very of-
ten discriminate classes in regions close to digit bor-
ders. Moreover, we performed experiments of deep
DIMLPs on the discrimination of digit 0. Compar-
ing our results with those of another work was again
in our favor.

In the last experiments we generated a ruleset
from the whole MNIST dataset. To the best of our
knowledge for a deep feed-forward architecture this
has been carried out for the first time. This tech-
nique has a potential application to reliability analy-
sis of fully automated driving car at the level-4 with
the use of deep DIMLPs and image data from driver
console. Finally, for Computer Vision classification
problems a new general question to elucidate in the
future is whether it will be possible to improve pre-
dictive accuracy using the extracted feature detec-
tors.
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have at the beginning a general picture of the most
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with their respective centroids can be analyzed in-
dividually as modular pieces of knowledge. At a
latest stage, one could go further through the details
by analyzing rules with lower covering.
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We presented a study on rule extraction from
ensembles of DIMLP networks and deep DIMLPs.
On two benchmark classification problems of med-
ical diagnosis we generated accurate rules from
DIMLP ensembles which revealed to be competi-
tive with respect to the state of the art. We trained
deep DIMLPs of four hidden layers on a benchmark
dataset in the computer vision domain.

For the MNIST dataset we first defined classi-
fication sub-problems of two or three classes. The
comparison with another work that applied rule ex-
traction to SVMs trained on digit 5 and digit 8 was
favorable to our DIMLPs deep networks. Rule ex-
traction emphasized feature detectors that very of-
ten discriminate classes in regions close to digit bor-
ders. Moreover, we performed experiments of deep
DIMLPs on the discrimination of digit 0. Compar-
ing our results with those of another work was again
in our favor.

In the last experiments we generated a ruleset
from the whole MNIST dataset. To the best of our
knowledge for a deep feed-forward architecture this
has been carried out for the first time. This tech-
nique has a potential application to reliability analy-
sis of fully automated driving car at the level-4 with
the use of deep DIMLPs and image data from driver
console. Finally, for Computer Vision classification
problems a new general question to elucidate in the
future is whether it will be possible to improve pre-
dictive accuracy using the extracted feature detec-
tors.

CHARACTERIZATION OF SYMBOLIC RULES EMBEDDED IN . . .

DIMLP-D DIMLP-D DIMLP-D DBN [16]
Fidelity 99.09 97.70 96.26 —
Predictive Accuracy of Rules 97.16 96.01 94.76 93.97
Number of Rules 65 200 400 —
Avg. Number of Antecedents per Rule 11.1 10.4 10.4 784
Number of Default Rule Activations 7057 5297 4039 —

Table 11. Results on the whole MNIST dataset for a small arced ensemble of three networks with 121
inputs.
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