PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Structure and Coefficient of Friction of Welded Nickel Alloys Inconel 625 and Inconel 718

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Struktura i współczynnik tarcia spawanych połączeń stopów niklu Inconel 625 i Inconel 718
Języki publikacji
EN
Abstrakty
EN
In this study, the coefficients of friction for three series of welded nickel alloy joints, subjected to different heat treatments (lack of heat treatment, solution heat treatment, precipitation hardening), were determined. Heat treatment of the prepared samples was aimed at eliminating the structural and stress gradient, because the electron beam welding technique is dedicated for constructions with very high quality and strength requirements. Given the nature of the electron beam process, the authors are aware that the obtained weld’s structures are characterized by different properties from parent materials, and also from structures melted under equilibrium conditions. The scientific aim of the presented work is to determine the influence of heat treatment on the microstructure, mechanical properties, and performance of dissimilar joints of nickel alloys Inconel 625 and Inconel 718. In order to determine the coefficient of friction for samples, the scratch test method was used. As a result of the research, it was proved that subjecting the welds to the precipitation hardening has a significant effect on abrasion resistance.
PL
Wyznaczono współczynniki tarcia dla trzech serii próbek poddanych odmiennym procesom obróbki cieplnej (brak obróbki cieplnej, przesycanie, utwardzanie wydzieleniowe). Obróbka cieplna przygotowanych próbek miała na celu zlikwidowanie gradientu strukturalnego i naprężeniowego, ponieważ spawanie wiązką elektronów dedykowane jest dla urządzeń o bardzo wysokich wymaganiach jakościowych i wytrzymałościowych. Biorąc pod uwagę charakter procesu spawania wiązką, autorzy mają świadomość, iż uzyskane struktury będą cechowały się zdecydowanie odmiennymi własnościami od materiału rodzimego, ale również i od struktur przetopionych w warunkach bliskich warunkom równowagowym. Celem naukowym pracy jest określenie wpływu obróbki cieplnej na mikrostrukturę, własności mechaniczne i użytkowe różnoimiennych połączeń stopów niklu Inconel 625 oraz Inconel 718. W celu wyznaczenia współczynników tarcia dla próbek zastosowano metodę zarysowania scratch test. W wyniku przeprowadzonych badań dowiedziono, że poddanie spoin procesowi utwardzania wydzieleniowego ma znaczący wpływ na odporność na ścieranie.
Czasopismo
Rocznik
Tom
Strony
109--115
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • 1. Song G., Sun Z., Poplawsky J. D., Gao Y., Liaw P. K.: Microstructural evolution of single Ni2TiAl or hierarchical NiAl/Ni2TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications. Acta Materialia, 2017, vol. 127, pp. 1–16.
  • 2. Verdi D., Garrido M. A., Múnez C. J., Poza P.: Influence of exposure at high temperature on the local scratch mechanisms in laser cladded Inconel 625-base metal matrix composite coatings. Journal of Alloys and Compounds, 2018, vol. 733, pp. 69–81.
  • 3. Feng K., Chen Y., Deng P., Li Y., Zhao H., Fenggui L., Li R., Huang J., Li Z.: Improved high-temperature hardness and wear resistance of Inconel 625 coatings fabricated by laser cladding. Journal of Materials Processing Technology, 2017, vol. 243, pp. 82–91.
  • 4. Ramkumar K. D., Abraham W. S., Viyash V., Arivazhagan N., Rabel A. M.: Investigations on the microstructure, tensile strength and high temperature corrosion behavior of Inconel 625 and Inconel 718 dissimilar joints. Journal of Manufacturing Processes, 2017, vol. 25, pp. 306–322.
  • 5. You X., Tan Y., Zhao L., You Q., Wang Y., Ye F., Li J.: Effect of solution heat treatment on microstructure and electrochemical behavior of electron beam smelted Inconel 718 superalloy. Journal of Alloys and Compounds, 2018, vol. 741, pp. 792–803.
  • 6. Cao G. H., Sun T. Y., Wang C. H., Li X., Liu M., Zhang Z. X., Hu P. F., Russel A. M., Schneider R., Gerthsen D., Zhou Z. J., Li C. P., Chen G. F.: Investigations of g′, g′′ and d precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting. Materials Charakterizatation, 2018, vol. 136, pp. 398–406.
  • 7. You X., Tan Y., Shi S., Yang J. M., Wang Y., Li J., You Q.: Effect of solution heat treatment on the precipitation behavior and strengthening mechanisms of electron beam smelted Inconel 718 superalloy. Materials Science & Engineering A, 2017, vol. 689, pp. 257–268.
  • 8. Deng D., Wang C., Liu Q., Niu T.: Effect of standard heat treatment on microstructure and properties of borided Inconel 718. Transactions of Nonferrous Metals Society of China, 2015, vol. 25, pp. 437–443.
  • 9. Paulonis D. F., Oblak J. J., Duvall D. S.: Precipitation in nickel-base alloy 718. Technical report 1969, Pratt&Whitney Aircraft, Middletown, Conn.
  • 10. Yadav P. C., Sahu S., Subramaniam A., Shekhar S.: Effect of heat-treatment on microstructural evolution and mechanical behaviour of severely deformed Inconel 718. Materials Science & Engineering A, 2018, vol. 715, pp. 295–306.
  • 11. Anderson M., Thielin A.-L., Bridier F., Bocher P., Savoie J.: d phase precipitation in Inconel 718 and associated mechanical properties. Materials Science & Engineering A, 2017, vol. 679, pp. 48–55.
  • 12. Sundararaman M., Mukopadhyay P., Banerjee S.: Precipitation of the d Ni3Nb phase in two nickel base superalloys. Metallurgical Transactions A, 1988, vol. 19., pp. 453–465.
  • 13. Cai D., Zhang W., Nie P., Liu W., Yao M.: Dissolution kinetics of ä phase and its influence on the notch sensitivity of Inconel 718, 2007, vol. 58, pp. 220–225.
  • 14. Deng D., Peng R. L., Brodin H., Moverare J.: Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments, Materials Science & Engineering A, 2018, vol. 713, pp. 294–306.
  • 15. Xing X., Di X., Wang B.: The effect of post-weld heat treatment temperature on the microstructure on Inconel 625 deposited metal. Journal of Alloys and Compounds, 2014, vol. 593, pp. 110–116.
  • 16. Tucho W. M., Cuvillier P., Sjolyst-Kverneland A., Hansen V.: Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Materials Science & Engineering A, 2017, vol. 689, pp. 220–232.
  • 17. Xu F., Lv Y., Liu Y., Xu B., Ge P.: Effect of heat treatment on microstructure and mechanical properties of Inconel 625 alloy fabricated by pulsed plasma arc deposition. Physics Procedia, 2013, vol. 50, pp. 48–54.
  • 18. Reddy M. G., Srinivasa Murthy C. V., Rao S., Prasad Rao K.: Improvement of mechanical properties of Inconel 718 electron beam welds – influence of welding techniques and postweld heat treatment.The International Journal of Advanced Manufacturing Technology, 2009, vol. 43, pp. 671–680.
  • 19. Biswas S., Reddy G. M., Mohandas T., Murthy C. V. S.: Residual stresses in Inconel 718 electron beam welds. Journal of Materials Science, 2004, vol. 39, pp. 6813–6815.
  • 20. Radhkrishna C. H., Prasad Rao K.: The formation and control of Laves phase in superalloy 718 welds. Journal of Materials Science, 1997, vol. 32, pp. 1977–1984.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14c73093-9d56-438f-98de-7559e70812d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.