PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical modeling of the aeroion mode in a car

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a mathematical method is proposed for calculating the concentration field of air ions of different polarities and dust levels in the passenger compartment, taking into account the geometry of the passenger compartment and seats, shelves, and other internal elements of the passenger compartment. The method also takes into account changes in the rate of the air flow ventilation, the location and number of ionizers, and sources of positive ions and dust, taking into account their different intensities and locations. On the basis of a numerical model for this method, software has been developed that allows users to carry out computational experiments without requiring much time for calculation. Based on the results, the optimal location of the ionizer in the passenger compartment of the car was determined to ensure comfortable conditions for the stay of passengers, which favorably affects their health. It has been found that the presence of two ionizers is optimal for creating comfort in the car with an ionization intensity of Qn= 0.47 ×1010 ions/s located at the top of the car. If there is one ionizer located on the dashboard or at the top of the car with a higher ionization rate than ions/s, it is not possible to simultaneously provide optimal ionization parameters for passengers in the front and rear seats of the car.
Czasopismo
Rocznik
Strony
19--32
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Ukrainian State University of Science and Technology; Lazaryan, 2, Dnipro, 49010, Ukraine
  • Ukrainian State University of Science and Technology; Lazaryan, 2, Dnipro, 49010, Ukraine
  • Oles Honchar Dnipro National University; Haharin av., 72, Dnipro, 49010, Ukraine
  • Oles Honchar Dnipro National University; Haharin av., 72, Dnipro, 49010, Ukraine
  • Silesian University of Technology; Krasiński 8, 40-019, Katowice, Poland
Bibliografia
  • 1. Rajagopalan, S. & Al-Kindi, S.G. & Brook, R.D. Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 2018. Vol. 72. No. 17. P. 2054-2070.
  • 2. Schraufnagel, D.E. The health effects of ultrafine particles. Experimental & Molecular Medicine. 2020. Vol. 52. P. 311-317.
  • 3. Zhu, C. & Maharajan, K. & Liu, K. & Zhanga, Y. Role of atmosphere particulate matter exposure in COVID-19 and other health risks in human: A review Environmental Reserch. 2021. Vol. 198. No. 111281.
  • 4. Hudda, N. & Kostenidou, E. & Sioutas, C. & Delfino, R.J. & Fruin, S.A. Vehicle and driving characteristics that influence in-cabin particle number concentrations. Environmental Science and Technology. 2011. Vol. 45(20). P. 8691-8697. Available at: http://dx.doi.org/10.1021/es202025m.
  • 5. Bigazzi, A. & Figliozzi, M. Impacts of freeway traffic conditions on in-vehicle exposure to ultrafine particulate matter. Environmental science & technology. 2012. Vol. 60. P. 495-503.
  • 6. Knibbs, L.D. & Cole-Hunter, T. & Morawska, L. A review of commuter exposure to ultrafine particles and its health effects. Atmospheric Environment. 2011. Vol. 45(16). P. 2611-2622.
  • 7. Chen, X.K. & Feng, L.L. & Luo, H.L. & Cheng, H.M. Analyses on influencing factors of airborne VOCS pollution in taxi cabins. Environmental Science and Pollution Research. 2014. Vol. 21. P. 12868-12882.
  • 8. Bin, Xu & Xiaokai, Chen & Jianyin, Xion Air quality inside motor vehicles’ cabins: A review. Indoor and Built Environment. 2016. Vol. 27(4). P. 452-465.
  • 9. Nadali, A. & Arfaeinia, H. & Asadgol, Z. & Fahiminia, M. Indoor and outdoor concentration of PM10, PM2. 5 and PM1 in residential building and evaluation of negative air ions (NAIs) in indoor PM removal. Environmental Pollutants and Bioavailability. 2020. Vol. 32. P. 47-55.
  • 10. Chen, P. & Wang, H. & Liu, H. & Ni, Z. & Li, J. & Zhou, Y. & Dong, F. Directional electron delivery and enhanced reactants activation enable efficient photocatalytic air purification on amorphous carbon nitride co-functionalized with O/La. Applied Catalysis B: Environmental. 2019. Vol. 242. P. 19-30.
  • 11. Qian, X. & Fuku, K. & Kuwahara, Y. & Kamegawa, T. & Mori, K. & Yamashita, H. Design and functionalization of photocatalytic systems within mesoporous silica. ChemSusChem. 2014. Vol. 7. P. 1528-1536.
  • 12. Kwong, C.W. & Chao, C.Y. & Hui, K.S. & Wan, M.P. Removal of VOCS from indoor environment by ozonation over different porous materials. Atmospheric Environment. 2008. Vol. 42. P. 2300-2311.
  • 13. Bekö, G. & Fadeyi, M.O. & Clausen, G. & Weschler, C.J. Sensory pollution from bag-type fiberglass ventilation filters: Conventional filter compared with filters containing various amounts of activated carbon. Building and Environment. 2009. Vol. 44. P. 2114-2120.
  • 14. Monpezat, A. & Topin, S. & Deliere, L. & Farrusseng, D. & Coasne, B. Evaluation methods of adsorbents for air purification and gas separation at low concentration: Case studies on xenon and krypton. Industrial Engineering Chemistry Research. 2019. Vol. 58. P. 4560-4571.
  • 15. Van Durme, J. & Dewulf, J. & Sysmans, W. & Leys, C. & Van Langenhove, H. Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalysis B: Environmental. 2007. Vol. 74. P. 161-169.
  • 16. Kowalski, W. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. Springer Science & Business Media: New York, NY, USA, 2010.
  • 17. Shabani, B. & Hafttananian, M. & Khamani, S. & Ramiar, A. & Ranjbar, A.A. Poisoning of proton exchange membrane fuel cells by contaminants and impurities: Review of mechanisms, effects, and mitigation strategies. Journal Power Sources. 2019. Vol. 427. P. 21-48.
  • 18. Guo, H. & Chen, J. & et al. A highly efficient triboelectric negative air ion generator. Nature Sustainability. 2021. Vol. 4. P. 147-153.
  • 19. Lin, H.-F. & Lin, J.-M. Generation and Determination of Negative Air Ions. Journal of Analysis and Testing. 2017. Р. 1-6. DOI: http://dx.doi.org/10.1007/s41664-017-0007-7.
  • 20. Jiang, S.-Y. & Ma, A. & Ramachandran, S. Negative air ions and their effects on human health and air quality improvement. International Journal of Molecular Sciences. 2018. Vol. 19(10). No. 2966. P. 1-19.
  • 21. Ljung, S. CFD simulation of particle matter inside an automotive car and the purification efficiency of cabin air purifier. Appendix B. Particle Fate. 2019. 50 p.
  • 22. Беляев, Н.Н. & Цыганкова, С.Г. Моделирование аэроионного режима в помещении при искусственной ионизации воздуха. Днепропетровск: ПГАСА, 2016. 109 p. [In Ukrainian: Belyaev, N.N. & Tsygankova, S.G. Simulation of the air-ion regime in a room with artificial air ionization. Dnepropetrovsk: PGASA].
  • 23. Fletcher, L.A. & Noakes, C.J. & Sleigh, P.A. & Beggs, C.B. & Shepherd, S.J. Air ion behavior in ventilated rooms. Indoor and Built Environment. 2008. Vol. 17(2). P. 173-182. DOI: http://dx.doi.org/10.1177/1420326X08089622.
  • 24. Biliaiev, M. & et al. Computing model for simulation of the pollution dispersion near the road with solid barriers. Transport Problems. 2021. Vol. 16. No. 2. P. 73-86.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14c43b24-4764-4b90-a0fa-61fa948e0cdc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.