PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An adaptative system for signposted intersection control : ASSINC

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the development of intelligent and adaptative system for signposted intersection control. The role of such systems is to manage the existing infrastructure to ease congestion and respond to crises. The proposed system, named ASSINC, try to insure a more fluid traffic flow. ASSINC is based on case based reasoning (CBR) approach and fuzzy logic to consider imprecise information taken from some detector. In fact, the CBR is always considered as a cyclic paradigm of Artificial Intelligence and that is used to learning and problem solving based on past experience. The developed system is tested on a virtual junction and the obtained results are discussed.
Rocznik
Strony
21--29
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • L.O.G.I.Q research group - University of Sfax, Higher Institute of Computer Science of Mahdia, Tunisia
autor
  • L.O.G.I.Q research group,- University of Sfax Route de Mharza km 1,5 - B.P: 1164 - 3018 Sfax - Tunisia
autor
  • G.I.A.D. research group, University of Sfax Route de l’Aroport, Km 4, Sfax - 3018 -, Tunisia
Bibliografia
  • [1] E. C. P. Chang, J. C. K. Lei, and C. J. Messer, “Arterial signal timing optimization using passer-ii,” Texas Transportation Institute, Tech. Rep., 1988.
  • [2] C.Wallace, K. Courage, and M. Hadi, “Transyt-7f, transyt-7f user’s manual,” Transportation Research Center, University of Florida, Tech. Rep., 1988.
  • [3] P. Negi, “Artificial immune system based urbain trafic control.” Texas A&M University, Tech. Rep., 2006.
  • [4] N. Messai, P. Thomas, D. Lefebvre, and A. El Moudni, “Neural networks for local monitoring of traffic magnetic sensors. , ),0.” Control Engineering Practice, vol. 13 (1, pp. 67–80, 2004.
  • [5] G. Balan and S. Luke, “History-based traffic control,” in AAMAS ’06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems. New York, NY, USA: ACM, 2006, pp. 616–621.
  • [6] F. Balbo and S. Pinson, “Using intelligent agents for transportation regulation support system design,” Transportation Research Part C: Emerging Technologies, July 2009.
  • [7] S. Haciane and N. Bhouri, “Regulation du trafic urbain avec une priorite aux transports en commun a laide dun systeme multi-agents,” in MOSIM10, 2010.
  • [8] I. Kosonen, “Multi-agent fuzzy signal control based on real-time simulation,” Transportation Research Part C, vol. 11, pp. 389–403, 2003.
  • [9] A. L. C. Bazzan, D. de Oliveira, and B. C. da Silva, “Learning in groups of traffic signals,” Eng. Appl. Artif. Intell., vol. 23, no. 4, pp. 560–568, 2010.
  • [10] B. Fayech, “”rgulation des rseaux de transport multimodal : systmes multi-agent et algorithms volutionnistes,” Ph.D. dissertation, universit des sciences et technologies de Lille, France, 2003.
  • [11] C. Quek, M. Pasquier, and B. Lim, “A novel selforganizing fuzzy rule-based system for modelling traffic flow behaviour,” Expert Syst. Appl., vol. 36, no. 10, pp. 12 167–12 178, 2009.
  • [12] D. Srinivasan, R. Cheu, Y. Poh, and A. C. Ng, “Development of an intelligent technique for traffic network incident detection,” Engineering Applications of Artificial Intelligence, vol. 13(3), pp. 311–322, 2000.
  • [13] Y. Hawas, “A fuzzy-based system for incident detection in urban street networks,” Transportation Research Part C, vol. 15, pp. 69–95, 2007.
  • [14] C. Tolba, D. Lefebvre, P. Thomas, and A. El-Moudni, “Commande des feux de signalisation par rseaux de petri hybrides,” JESA, vol. 42(5), pp. 579–612, 2008.
  • [15] M. Dotolia and M. P. Fanti, “An urban traffic network model via coloured timed petri nets,” Control Engineering Practice,, vol. 14(10), pp. 1213–1229, 2006.
  • [16] A. Di Febbraro, D. Giglio, and N. Sacco, “Urban traffic control structure based on hybrid petri nets,” IEEE Transactions on Intelligent Transportation Systems, vol. 5(4), pp. 224–237, 2004.
  • [17] M. Shenoda and Y. Machemehl, “Development of a phase-by-phase, arrival-based, delay-optimized metaheuristic search,” Government Accession No.4., Tech. Rep., 2006.
  • [18] A. Turky, S. S.A., and M. Z. M. Y., “The use of genetic algorithm for traffic light and pedestrian crossing control,” International Journal of Computer Science and Network 88 Security, vol. 9 (2), pp. 88–96, 2009.
  • [19] H. Ceylan and M. G. H. Bell, “Traffic signal timing optimisation based on genetic algorithm approach, including drivers? routing,” Transportation Research Part B-methodological, vol. 38, pp. 329–342, 2004.
  • [20] S. Elkosantini, S. Mnif, and H. Chabchoub, “A system for the traffic control in signposted junctions,” in SSCI 2011 - IEEE Symposium Series on Computational Intelligence, Paris France, 2011.
  • [21] S. Elkosantini, S. Mnif, and H. Chabchou, “An urban traffic controller for signposted road-rail intersections,”in 4th IEEE International Conference on Logistics- LOGISTIQUA?11, Hammamet Tunisia,2011.
  • [22] S.-W. Chen, C.-B. Yang, and Y.-H. Peng, “Algorithms for the traffic light setting problem on the graph model,” in Proc. of the 12th Conference on Artificial Intelligence and Applications, Yunlin, Taiwan, 2007.
  • [23] L. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, 1965.
  • [24] G. Bortolan and R. Degan, Readings in Fuzzy Sets for Intelligent Systems, 1993, ch. A review of some methods for ranking fuzzy subsets, pp. 149–158.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14c372e8-d233-4e48-889c-522949c4395e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.