PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Natural products as potential inhibitors of FLT3 for acute myeloid leukemia: HTVS, docking, and molecular dynamic simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cancer is one the most common health issues worldwide, with cancer-related mortality of 9.5 million in 2018, with an expectation to become 29.5 by 2040. Among others, acute myeloid leukemia (AML) is common among older people. FLT3 mutations are one of the most common genetic aberrations found in Acute Myeloid Leukemia and are associated with poor prognosis. Herein, we attempt to identify natural compounds as potential candidates to treat AML by targeting the FLT3 kinase domain using in silico approaches. The COCONUT database, which contains 407,270 natural compounds, was HTVS against the FLT3 kinase domain active site, and promising compounds were subject to molecular docking. Finally, frontier compounds were validated further using molecular dynamic simulation. In total, ten compounds were identified with docking scores higher than Quizartinib (-11.606 kcal/mol), with the best three compounds showing a docking score of -18.052, -15.772, and -16.767 kcal, respectively, and compound 2 showing excellent stability in molecular dynamic simulation.
Czasopismo
Rocznik
Strony
325--346
Opis fizyczny
Bibliogr. 23 poz., il. kolor., rys.
Twórcy
  • PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
autor
  • PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
autor
  • PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
  • PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
  • PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
  • Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
Bibliografia
  • [1] Gebru, M.; Wang, H.; Therapeutic targeting of FLT3 and associated drug resistance in acute myeloid leukemia. J. Hematol Oncol. 2020, 13, 1-13. DOI: 10.1186/s13045-020-00992-1
  • [2] Barley, K.; Navada, S.; Acute myeloid leukemia. J. Oncology. 2019, 308-318, DOI 10.1002/9781119189596.ch27
  • [3] Mohan, H.; Textbook of Pathology, 7th ed. 2015, The Health Sciences Publishers.
  • [4] Orgueira, A.; Pérez, L.; Torre, A.; Raíndo, A.; López, M.; Arias, J.; Ferro, R.; Rodríguez, B.; Pérez, M.; Ferreiro, M.; Vence, N.; Encinas, M.; López, J.; Martinelli, G.; Cerchione, C.; FLT3 inhibitors in the treatment of acute myeloid leukemia: current status and future perspectives. J. Minerva Med. 2020, 111, 5.DOI: 10.23736/S0026-4806.20.06989-X
  • [5] Daver, N.; Schlenk, R.; Russell, N.; Levis, M.; Targeting FLT3 mutations in AML: review of current knowledge and evidence. J. Leukemia. 2019, 33, 299-312.DOI: 10.1038/s41375-018-0357-9
  • [6] Yamaura, T.; Nakatani, T.; Uda, K.; Ogura, H.; Shin, W.; Kurokawa, N.; Saito, K.; Fujikawa, N.; Date, T.; Takasaki, M.; Terada, D.; Hirai, A.; Akashi, A.; Chen, F.; Adachi, Y.; Ishikawa, Y.; Hayakawa, F.; Hagiwara, S.; Naoe, T.; Kiyoi, H.; A novel irreversible FLT3 inhibitor, FF-10101, shows excellent efficacy against AML cells with FLT3 mutations. J. Blood. 2018, 131, 426-438. DOI: 10.1182/blood-2017-05-786657
  • [7] Kiyoi, H.; Kawashima, N.; Ishikawa, Y.; FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. J. Cancer Sci. 2020, 111, 312-322. DOI: 10.1111/cas.14274
  • [8] Wang, Z.; Jiongheng, C.; Jie, C.; Wenqianzi, Y.; Yifan, Z.; Hongmei, L.; Tao, L.; Yadong, C.; Shuai, L.; FLT3 Inhibitors in Acute Myeloid Leukemia: Challenges and Recent Developments in Overcoming Resistance. J. Med. Chem. 2021, 64, 2878-2900. https://doi.org/10.1021/acs.jmedchem.0c01851
  • [9] Tong, L.; Xuemei, L.; Yongzhou, H.; Tao, L.; Recent advances in FLT3 inhibitors for acute myeloid leukemia, J. Future Med. Chem. 2020, 12, 961-981. https://doi.org/10.4155/fmc-2019-0365
  • [10] Huang, M.; Lu, J.; Ding, J.; Natural Products in Cancer Therapy: Past, Present and Future, J.Nat. Products Bioprospect. 2021, 11, 5-13. DOI: 10.1007/s13659-020-00293-7
  • [11] Herschlag, D.; Pinney, M.; Hydrogen Bonds: Simple after All?. J. Biochemistry. 2018, 57, 3338-3352. https://doi.org/10.1021/acs.biochem.8b00217
  • [12] Alnajjar, R.; Mohamed, N.; Kawafi, N.; Bicyclo[1.1.1]Pentane as Phenyl Substituent in Atorvastatin Drug to improve Physicochemical Properties: Drug-likeness, DFT, Pharmacokinetics, Docking, and Molecular Dynamic Simulation. J. Mol. Struct. 2021,1230. https://doi.org/10.1016/j.molstruc.2020.129628
  • [13] Lipinski, C.; Lead- and drug-like compounds: The rule-of-five revolution. J. Drug Discovery Today: Technologies. 2004, 1, 337-341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • [14] Maestro, Schrödinger. "Maestro." Schrödinger, LLC, New York, NY, 2020.
  • [15] Farouk, F.; Elmaaty, A.; Elkamhawy, A.; Tawfik, H.; Alnajjar, R.; Abourehab, M.; Al‐Karmalawy, A.; Investigating the potential anticancer activities of antibiotics as topoisomerase II inhibitors and DNA intercalators: in vitro, molecular docking, molecular dynamics, and SAR studies. J. Enzyme Inhibit. Med. Chem. 2023, 38, 217-1029. DOI:10.1080/14756366.2023.2171029
  • [16] Release, S.; 3: Desmond molecular dynamics system, DE Shaw research, New York, NY, 2017, Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY 2017.
  • [17] Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.; Wang, L.; Lupyan, D.; Dahlgren, M.; Knight, J.; Kaus, J.; Cerutti, D.; Krilov, G.; Jorgensen, W.; Abel, R.; Friesner, R.; OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theor. Comput. 2016, 12, 281-296. DOI: 10.1021/acs.jctc.5b00864
  • [18] Jorgensen, W.; Chandrasekhar, J.; Madura, J.; Impey, R.; Klein, M.; Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935. https://doi.org/10.1063/1.445869
  • [19] Neria, E.; Fischer, S.; Karplus, M.; Simulation of activation free energies in molecular systems. J. Chem. Phys. 1996, 105, 1902-1921. https://doi.org/10.1063/1.472061
  • [20] Release, S.; 4. Desmond Molecular Dynamics System, DE Shaw Research. Maestro-Desmond Interoperability Tools 2016.
  • [21] Martyna, G.; Klein, M.; Tuckerman, M.; Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635-2643. DOI: 10.1063/1.463940
  • [22] Martyna, G.; Tobias, D.; Klein, M.; Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994, 101, 4177-4189. https://doi.org/10.1063/1.467468
  • [23] Daina, A.; Michielin, O.; Zoete, V.; SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. J. Sci. Rep. 2017, 7. https://doi.org/10.1038/srep42717
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14b7ecea-c5b3-4cb1-95e3-fa98ae7bab4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.