PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of numerical models of cavitating flows with the use of the homogeneous approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The focus of research works on cavitation has changed since the 1960s; the behaviour of a single bubble is no more the area of interest for most scientists. Its place was taken by the cavitating flow considered as a whole. Many numerical models of cavitating flows came into being within the space of the last fifty years. They can be divided into two groups: multifluid and homogeneous (i.e., single-fluid) models. The group of homogenous models contains two subgroups: models based on transport equation and pressure based models. Several works tried to order particular approaches and presented short reviews of selected studies. However, these classifications are too rough to be treated as sufficiently accurate. The aim of this paper is to present the development paths of numerical investigations of cavitating flows with the use of homogeneous approach in order of publication year and with relatively detailed description. Each of the presented model is accompanied by examples of the application area. This review focuses not only on the list of the most significant existing models to predict sheet and cloud cavitation, but also on presenting their advantages and disadvantages. Moreover, it shows the reasons which inspired present authors to look for new ways of more accurate numerical predictions and dimensions of cavitation. The article includes also the division of source terms of presented models based on the transport equation with the use of standardized symbols.
Rocznik
Strony
71--88
Opis fizyczny
Bibliogr. 33 poz., tab., wz.
Twórcy
  • University of Warmia and Mazury, Faculty of Technical Sciences, 10-957 Olsztyn, Poland
  • Fakultät für Maschinenwesen, Technische Universität München, D-85748 Garching, Germany
autor
  • University of Warmia and Mazury, Faculty of Technical Sciences, 10-957 Olsztyn, Poland
Bibliografia
  • [1] Reynolds O.: Experiments showing the boiling of water in an open tube at ordinary temperatures. Scientific Papers on Mechanical and Physical Subject, Vol. II. Cambridge Uni. Press, Cambridge 1894, 1900-1903, 578–587.
  • [2] Thorneycroft J., Barnaby S.W.: Torpedo-boat destroyers. Inst. Civil Engineers 122(1895), 51–55.
  • [3] Rayleigh L.: On the pressure developed in a liquid during the collapse of a spherical cavity. Philosoph. Mag. 34(1917), 94–98.
  • [4] Plesset M.S., Prosperetti A.: Bubble dynamics and cavitation. Ann. Rev. Fluids Mech. 9(1977), 145–185.
  • [5] Ivany R.D., Hammit F.G.: Cavitation bubble col lapse in viscous compressible liquids – numerical analysis. J. Basic Eng. 87(1965), 977–985.
  • [6] Sobieski W.: The basic equations of fluid mechanics in form characteristic of the finite volume method. Techn. Sci. 14(2011), 299–313.
  • [7] Frikha S., Coutier-Delgosha O., Astolfi J.A: Influence of the cavitation model on the simulation of cloud cavitation on 2D foil section. Int. J. Rot. Mach. 2008.
  • [8] Goel T., Thakur S., Haftka R., Shyy W., Zhao J.: Surrogate model-based strategy for cryogenic cavitation model validation and sensitivity evaluation. Int. J. Numer. Meth. Fl. 58(2008), 969–1007.
  • [9] Goncalves E., Charrière B.: Modeling for isothermal cavitation with a fourequation model. Int. J. Multiphase Flow 59(2014), 54–72.
  • [10] Senocack I., Shyy W.: Numerical simulation of turbulent flows with sheet cavitation. In: Proc. 4th Int. Symp. Cavitation (CAV2001), Pasadena 2001.
  • [11] Žnidarčič A., Mettin R., Dular M.: Modeling cavitation in a rapidly changing pressure field – application to a small ultrasonic horn. Ultrason. Sonochem. 22(2015), 482–492.
  • [12] Kubota A., Kato H., Yamaguchi H.: A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech. 240(1992), 59–96.
  • [13] Merkle C. L., Feng J., Buelow P.E.O.: Computational modeling of the dynamics of sheet cavitations. In: Proc. 3rd Int. Symp. Cavitation, Grenoble 1998.
  • [14] Ducoin A., Huang B., Young Y. L.: Numerical modeling of unsteady cavitating flows around a stationery hydrofoil. Int. J. Rot. Mach. 2012.
  • [15] Shi S., Wang G., Hu Ch.: A Rayleigh-Plesset based transport model for cryogenic fluid cavitating flow computations. Sci. China Phys. Mech. Astron. 57(2014), 764–773.
  • [16] Ahuja V., Hosagandi A., Arunajatesan S.: Simulations of cavitating flows using hybrid unstructured meshes. J. Fluids Eng. 123(2001), 331–340.
  • [17] Senocak I., Shyy W.: Interfacial dynamics-based modelling of turbulent cavitating flows, part 1: model development and steady-state computations. Int. J. Numer. Meth. Fl. 44(2004), 977–995.
  • [18] Kunz R.F., Boger D.A., Stinebring D.R., Chyczewski T.S., Lindau J. W., Gibeling H.J., Venkateswaran S. Govindan T.R.: A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction. Comput. Fluids 29(2000).
  • [19] Morgut M., Nobile E.: Numerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration. Int. J. Rot. Mach., 2012.
  • [20] Morgut M., Nobile E., Biluš I.: Comparison of mass transfer model for the numerical prediction of sheet cavitation around a hydrofoil. Int. J. Multiph. Flow 37(2011), 620–626.
  • [21] Hohenberg P.C., Halperin B.I.: Theory of dynamic critical phenomena. Rev. Modern Phys. 49(1977), 435–479.
  • [22] Schnerr G.H., Sauer J.: Physical and numerical modeling of unsteady cavitation dynamics. In: Proc. 4th Int. Conf. Multiphase Flow (ICMF’01), New Orleans 2001.
  • [23] Iben U.: Modeling of cavitation. Systems Analysis Modeling Simulations 42(2002), 1283–1307.
  • [24] Singhal A.K., Athavale M.M., Li H., Jiang Y.: Mathematical basis and validation of the full cavitation model. J. Fluids Eng. 124(2002), 617–624.
  • [25] Frobenius M., Schilling R., Bachert R., Stoffel B., Ludwig G.: Threedimensional, unsteady cavitation effects on a single hydrofoil and in a radial pump – measurements and numerical simulations, part two: numerical simulation. In: Proc. 5th Int. Symp. Cavitation (CAV2003), Osaka 2003.
  • [26] Saito Y., Nakamori I., Ikohagi T.: Numerical analysis of unsteady vaporous cavitating flow around a hydrofoil. In: Proc. 5th Int. Symp. Cavitation (CAV2003), Osaka 2003.
  • [27] Zwart P.J., Gerber G., Belamri T.: A two-phase flow model for prediction cavitation dynamics. In: Proc. 5th Int. Conf. Multiphase Flow (ICMF 2004), Yokohama 2004.
  • [28] Wu J., Wang G, ShyyW.: Time-dependent turbulent cavitating flow computations with interfacial transport and filter-based models. Int. J. Numer. Meth. Fl. 49(2005), 739–761.
  • [29] Merkle C.L., Li D., Venkateswaran S.: Multi-Disciplinary Computational Analysis in Propulsion. In: Proc. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Sacramento 2006.
  • [30] Park W., Ha C., Merkle C.L.: Multiphase flow analysis of cylinder using a new cavitation model. In: Proc. 7th Int. Symp. Cavitation (CAV2009), Ann Arbor 2009.
  • [31] Huang B., Wang G.Y.: A modified density based cavitation model for time dependent turbulent cavitating flow computations. Chinese Sci. Bull.n 56(2011), 1985–1992.
  • [32] Goncalves E.: Numerical study of expansion tube problems: towards the simulation of cavitation. Comput. Fluids 72(2013), 1–19.
  • [33] Konstantinov S.Y., Tselischev D.V., Tselischev V.A.: Numerical cavitation model for simulation of mass flow stabilization effect in ANSYS CFX. Mod. Appl. Sci. 9(2015), 21–31.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14b4b760-fb5d-4129-b75e-86940ecaecf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.