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Abstract The focus of research works on cavitation has changed since
the 1960s; the behaviour of a single bubble is no more the area of interest
for most scientists. Its place was taken by the cavitating flow considered as
a whole. Many numerical models of cavitating flows came into being within
the space of the last fifty years. They can be divided into two groups: multi-
fluid and homogeneous (i.e., single-fluid) models. The group of homogenous
models contains two subgroups: models based on transport equation and
pressure based models. Several works tried to order particular approaches
and presented short reviews of selected studies. However, these classifica-
tions are too rough to be treated as sufficiently accurate. The aim of this
paper is to present the development paths of numerical investigations of cav-
itating flows with the use of homogeneous approach in order of publication
year and with relatively detailed description. Each of the presented model
is accompanied by examples of the application area. This review focuses
not only on the list of the most significant existing models to predict sheet
and cloud cavitation, but also on presenting their advantages and disad-
vantages. Moreover, it shows the reasons which inspired present authors to
look for new ways of more accurate numerical predictions and dimensions
of cavitation. The article includes also the division of source terms of pre-
sented models based on the transport equation with the use of standardized
symbols.
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Nomenclature

A – interfacial area concentration, m2

c – speed of sound in the mixture, m/s
cwallis – propagation of acoustic waves without mass transfer, m/s
C – model constant
CA – additional model constant
Cµ – empirical turbulent viscosity constant
d – body diameter, m
e – energy, (kg m2)/s2

f – mass fraction
k – turbulence kinetic energy, m2/s2

kp – scaling constant
kv – scaling constant
L – length scale, m
ṁ – mass transfer rates, mass source, kg/(m3s)
no – nuclei concentration per unit volume, nuclei/m3

p – local fluid pressure, Pa
pI – spherical stress tensor, Pa
psat – saturated vapour pressure, Pa
qm – molecular heat flux, kg/s3

qR – turbulent heat flux, kg/s3

r – radius of the sphere, m
R – bubble radius, m
R1 – universal gas constant, J/(mol K)
sb – intensity of the mass forces source, N/m3

se – intensity of the energy source, J/(m3/s)
t – time, s
t∞ – time scale of free stream value, s
T – temperature, K
Tsat – saturation temperature, K
u – velocity vector, m/s
uI,n – normal velocity component to interface, m/s

uLocal
I,n – interface flow field local velocity component, m/s

unet
I,n – interface net velocity component, m/s

uv,n – vapor phase normal velocity component, m/s
U – velocity magnitude, m/s
V – volume, m3
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Greek symbols

α – volume fraction
ε – dissipation, m2/s3

µ – dynamic viscosity, Pa s
µtm – eddy viscosity, Pa s
ρ – density, kg/m3

σ – surface tension, N/m
τ

m – viscous molecular stress tensor, Pa

τ
R – turbulent Reynolds stress tensor, Pa

Subscripts

S – Schnerr and Sauer model
d – evaporation term
g – gas
l – liquid
m – mixture
p – condensation term
v – vapor
nuc – nucleation site
∞ – free stream value
Z – Zwart model

Boldface lower-case letters refer to vectors while boldface capital letters and Greek lower-
case letters refer to matrices.

1 Introduction

The history of cavitation studies dates back to 1894. The first description
of the occurrence of vapour bubbles in water appeared in Reynolds’ paper,
but it should be emphasized that throughout this document there is no
such expression as ‘cavitation’ [1]. Thorneycroft and Barnaby [2] published
the work to describe the unknown phenomenon that was responsible for the
wear of the surface of a screw propeller and used this expression not until
one year later. Twenty two years passed by before Rayleigh [3] published
the first mathematical model of cavitation in the incompressible fluid. The
awareness of weak points of the first model such as neglecting surface ten-
sion and liquid viscosity caused a long scientific discussion that went on for
sixty years. The bubble dynamic equation presented by Plesset [4] is until
today the well-known form of the mathematical model of bubble dynamics

R
d2R

dt2
+

3

2

(

dR

dt

)2

=
psat − p

ρl

− 2σ

ρlR
− 4

µl

ρlR

dR

dt
, (1)

 - 10.1515/aoter-2016-0013
Downloaded from PubFactory at 08/16/2016 09:36:23AM

via free access



74 A. Niedźwiedzka, G.H. Schnerr, W. Sobieski

known as the Rayleigh-Plesset equation.
The Rayleigh-Plesset equation was the basis for pioneering works in the

area of numerical investigations, which covered the analyses of behaviour of
a single bubble under the influence of the variable pressure of the surround-
ing liquid [5]. In the course of time, the focus of research works on cavitation
has changed. The place of the analyses of the behavior of a single bubble
was taken by the cavitating flow considered as a whole. All numerical simu-
lations of the cavitating flow, regardless of the used approach (multi-fluid or
homogeneous), require to solve the appropriate set of governing equations,
which include mass, momentum or energy equations [6]:

∂ρ

∂t
+ div (ρu) = 0 , (2)

∂

∂t
(ρu) + div (ρu ⊗ u) = div

(

−pI + τ
m + τ

R
)

+ ρsb , (3)

∂

∂t
(ρe) + div (ρeu + ρu) = div

[(

−pI + τ
m + τ

R
)

u + qm + qR
]

+ ρse .

(4)
In the case of multifluid approach, the number of sets of governing equations
is dependent on the number of considered phases. In the homogeneous
approach, one set of governing equations is solved for all phases. The flow
is treated as a mixture of two incompressible phases. One way that enables
to take the change of vapour fraction into consideration, is introduction
of the additional transport equation that in most of cases is based on the
mentioned above Rayleigh-Plesset equation (1). The transport equation,
based on the standard formula presented in the Frikha et al. work [7], can
be expressed in terms of changes in vapour volume:

∂αv

∂t
+ div (αvu) = α , (5)

liquid volume
∂αl

∂t
+ div (αlu) = α , (6)

vapour mass
∂ρvαv

∂t
+ div (ρvαvu) = ṁ+ + ṁ− , (7)

and liquid mass
∂ρlαl

∂t
+ div (ρlαlu) = ṁ+ + ṁ− . (8)
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In this article the phase transformation is presented in the form of liquid
mass change Eq. (8). The transport equation is expressed in the form of
mass transfer rates, ṁ, (called source terms) that have different forms for
condensation – increase of liquid mass (ṁ+), when the local fluid pressure
increases above the saturated vapour pressure and evaporation – decrease of
liquid mass (ṁ−), when the local fluid pressure drops below the saturated
vapour pressure:

ṁ =

{

ṁ+

ṁ−
if
if

p > psat ,
p < psat .

(9)

The second most popular way to express the source terms, which is
also presented in the article, is given by Eq. (5). In this case, when
the local fluid pressure increases above the saturated vapour pressure, the
vapour volume decreases and when the local fluid pressure drops below the
saturated vapour pressure, the vapour volume increases:

α =

{

α−

α+
if
if

p > psat ,
p < psat .

(10)

In case using in the original papers of other form of source terms than
the chosen variant (Schnerr and Sauer [22], Frobenius et al. [25], the both
forms of source terms (original and target) are presented.

Until today several works [7–11] tried to order particular approaches
and presented short reviews of selected studies. This review summarizes
assumptions of all significant homogeneous fluid approaches used to model
the sheet and cloud cavitation up to now. The review is not limited to
the simple listing of authors and their ideas of cavitation homogeneous
models in order of publication year, but also delivers information about the
differences in relation to the previous works and the intended application
area. By the description of application area the emphasis was put on the
number of dimensions of models and character of simulations, steady-state
or unsteady. The conclusion includes hints for choice of the appropriate
simulation model.

 - 10.1515/aoter-2016-0013
Downloaded from PubFactory at 08/16/2016 09:36:23AM

via free access



76 A. Niedźwiedzka, G.H. Schnerr, W. Sobieski

2 The development paths of numerical

investigations of cavitating flows with

the use of the homogeneous approach

Kubota [12] proposed the first homogeneous model based on transport
equation, which gained the international appreciation, in 1992. The model
was applied in two dimensional steady-state analysis of the flow around
a hydrofoil NACA 0015 at angles of attack of 8◦ and 20◦. The model is
called the bubble two-phase flow (BTF) cavity model. Until today, many
researches [13,14] use the model as a reference point in their investigations.
Kubota formulated the local homogeneous model (LHM) equation of mo-
tion

(

1 + 2πr2n0R
)

R
D2R

Dt
+

(

3

2
+ 4πr2n0R

)(

DR

Dt

)2

+ 2πr2 Dn0

Dt
R2 DR

Dt
=

psat − p

ρl
(11)

on the basis of the exact nonlinear Rayleigh-Plesset equation. In the first
analyses the initial value of bubble radius R was set to 1 × 10−6 m. Unfor-
tunately, the nonlinear character of the model led to instability.

Many researches tried to identify the weak points of the Kubota model
and suggested their own solutions of the pointed problems. Merkle et al.
[15–17] presented in 1998 their own version of source terms

ṁ+ =
Cpρv(1 − αl)(p − psat)

(0.5ρlU2
∞)t∞

, p > psat , (12)

ṁ− = −Cdρlαl (psat − p)

(0.5ρlU2
∞) t∞

, p < psat . (13)

Unlike the source terms proposed by Kubota, their variant does not refer
to the bubble radius, but to the change of the liquid density, which is
proportional to the dynamic pressure

|psat − p| =
κρ∞U2

∞

2
. (14)

The parameter κ has a value between 0.2 and 0.5. Changes of fluid volume
caused by changes of its density allow considering the fluid as compressible.
Merkle et al. took also the characteristic time scale of fluid motion t∞ into
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account, through the formulation of source terms. The characteristic time
scale of fluid motion

t∞ =
d

U∞
(15)

allowed expressing the time necessary for transition from one phase to the
other in the condensation and evaporation source terms. The model can
be a useful instrument for many applications. Merkle et al. [13] applied
the model to numerical simulations of two dimensional steady-state flow
over the NACA MOD 66 hydrofoil at the angle of attack of 4◦. Ahuja et
al. [16] tested the model in simulations of sheet cavitation around over
a cylindrical head form and a NACA MOD 66 hydrofoil at the angle of
attack of 4◦. Senocack and Shyy [17] applied the model to two dimensional
steady-state flows around the axisymmetric cylindrical body, planar NACA
MOD 66 hydrofoil and through a convergent-divergent nozzle.

Kunz et al., in 2000, presented the other solution of source terms [18–20]

ṁ+ =
Cpρvα2

l (1 − αl)

t∞
, p > psat , (16)

ṁ− = −Cdρvαl (psat − p)

(0.5ρlU2
∞) t∞

, p < psat . (17)

The authors used the approach based on the Ginzburg-Landau potential.
Hohenberg and Alperin [21] emphasized usefulness of this theory for dy-
namic phenomena emphasized in 1977. In the numerical analyses, the k-ε
turbulence model was implemented. Kunz et al. [18] presented solutions of
two sets of numerical analyses. The first of them includes two-dimensional
steady-state and unsteady analyses of cavitation on a series of axisymmet-
ric forebodies. In the next set, an extended application for steady-state and
unsteady flow over a 1-caliber ogive at angle of attack of 10◦ is presented.

In 2001 many studies on transport based cavitation models appeared.
Schnerr and Sauer [22] presented the first transport based cavitation model
which does not need any empirical constants

α+ =
n0

1 + 4
3n0πR3

4πR2

√

2

3

(p − psat)

ρl
, p < psat , (18)

α− = − n0

1 + 4
3n0πR3

4πR2

√

2

3

(p − psat)

ρl

, p > psat . (19)
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The new cavitation model was applied in simulations of two-dimensional
steady and unsteady cavitating nozzle flows. The transport equation of
the model requires only quantitative values of the physical parameters.
The model avoids any nonphysical parameter. The initial value of bubble
radius, R, was set to 3 × 10−5 m. After transforming Eqs. (18) and (19) to
the form of source terms, the equations take the following forms:

ṁ+ =
ρvρl

ρm
αv (1 − αv)

3

R

√

2

3

(p − psat)

ρl
, p > psat , (20)

ṁ− = −ρvρl

ρm
αv (1 − αv)

3

R

√

2

3

(psat − p)

ρl

, p < psat . (21)

The source terms – Eqs. (20) and (21) include a part which describes
dynamics of the bubble growth. This expression,

Ṙ =
dR

dt
=

√

2

3

(p − psat)

ρl

, (22)

follows directly from the simplified form of the original Rayleigh equation
which became the basis for many subsequent models of transport equation
as well.

Iben [23] based the form of the evaporation and condensation rates of
his model on the Rayleigh-Plesset equation:

ṁ+ = Cpρv
6αv

2R

√

2

3

(p − psat)

ρl
, p > psat , (23)

ṁ− = −ρl
6αv

2R

√

2

3

(psat − p)

ρl

, p < psat (24)

The main feature that distinguishes the presented formulation from the
above listed source terms, is the possibility to use the empirical model con-
stant only in the condensation rate. This procedure is aimed at considering
the slower evolution of the condensation process. The initial value of the
bubble radius, R, was set to 0.5 × 10−5 m. The model of Iben is intended
to simulate cavitation in throttles and nozzles in one- and two-dimensional
systems.

In 2002 appeared the first commercially used model called the ‘full cav-
itation model’ which was formulated by Singhal et al. [24] . The form of
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the defined source terms

ṁ+ = Cp

√
k

σ
ρlρl

√

2

3

(p − psat)

ρl
fv , p > psat , (25)

ṁ− = −Cd

√
k

σ
ρlρv

√

2

3

(psat − p)

ρl

(1 − fv − fg) , p < psat (26)

is similar to the forms that were presented by Schnerr and Sauer [22] or Iben
[23]. All mentioned equations (both condensation and evaporation terms)
contain the square root of the quotient, where the numerator is the differ-
ence between the local pressure and vapor pressure, and the denominator
is the liquid density. One feature distinguishes the source terms of Sing-
hal model from all solutions of the time: source terms express not only the
changes of bubble dimensions (the Rayleigh-Plesset equation as the starting
point through formulating of the transport expressions), but also the local
turbulent kinetic energy,

√
k, the surface tension (σ = 0.0717 N/m) and

the content of noncondensible gases (NCG) in the liquid (fg ≈ 10 ppm).
The vapour mass fraction is calculated as follows:

Yv =
αv

ρm
. (27)

The name of the model derives from taking into consideration many factors
in the formulation of the source terms. The ‘full cavitation model’ was
validated in steady state two-dimensional numerical analyses by Singhal et
al. for cavitation on a NACA MOD 66 hydrofoil, in submerged cylindrical
bodies and in sharp-edged orifices.

In 2003 other models of cavitating flow based on transport equation
appeared, that are worth mentioning and describing. The first of them is
the model due to Frobenius [25]. This model’s characteristic lies in the
specific form of the source terms, which express no more the change of the
liquid mass, but the change of the vapour volume fraction, the same as in
Schnerr and Sauer model [22]:

α+ = Cp
n0

1 + 4
3n0πR3

4πR2

√

2

3

(p − psat)

ρl

, p < psat , (28)

α− = −Cd
n0

1 + 4
3n0πR3

4πR2

√

2

3

(p − psat)

ρl

, p > psat . (29)
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After transformation to the form of the source terms, the equations have
following forms :

ṁ+ = Cp
ρvρl

ρm
αv (1 − αv)

3

R

√

2

3

(p − psat)

ρl

, p > psat , (30)

ṁ− = −Cd
ρvρl

ρm
αv (1 − αv)

3

R

√

2

3

(psat − p)

ρl
, p > psat . (31)

Frobenius et al. set the value of nuclei concentration, n0, to 1 × 108

nuclei/m3 and the initial value of bubble radius, R, to 30 × 10−6 m. Frobe-
nius et al. [25] performed two- and three-dimensional steady-state and
unsteady flow simulations around a hydrofoil and steady-state simulations
for flow through the centrifugal pump impeller.

The next model that appeared in 2003 was the one due to Saito [26].
The model expresses no more the mass volume change, but the mass sur-
face change, so the unit of mass source, ṁ, is no longer kg/(m3 s), but
kg/(m2 s). A new variable A, expressing the interfacial area concentration
in the vapour-liquid mixture,

A = Caαv (1 − αv) (32)

is used as a distinctive feature in this model for both mass transfer rates

ṁ+ = CpAαv (1 − αv)
(p − psat)√
2πR1Tsat

, p > psat , (33)

ṁ− = −CdAαv (1 − αv)

(

ρl

ρv

)

(psat − p)√
2πR1Tsat

, p < psat . (34)

The authors do not give the answer about the values of the model constants
used. The only hint is a mutual relationship between all constants

C = CpCa = CdCa . (35)

The value of the empirical model constant C was set in the numerical sim-
ulations of Saito et al. to 0.1 m−1. Saito et al. assessed the correctness
of their model in prediction of cavitation region through unsteady three-
dimensional simulations of cavitating flows over a hemisphere and a cylinder
geometry. They applied their model in two-dimensional simulations of un-
steady flow past the CAV2003 hydrofoil at an angle of attack of 7◦.

The source terms of the model proposed by Zwart et al. in 2004 [27]

ṁ+ = Cp
3αvρv

R

√

2

3

(p − psat)

ρl
, p > psat , (36)
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ṁ− = −Cd
3ρv (1 − αv) αnuc

R

√

2

3

(psat − p)

ρl

, p < psat (37)

have a similar form as in the Iben model – Eqs. (23) and (24), but the vapor
volume fraction αv in the condensation rate was replaced by the product of
the nucleation site of volume fraction αnuc and the remaining fluid volume
fraction (1 − αv). Zwart et al. use the standard k-ε model with a modified
expression for the eddy viscosity

µtm = f (ρ) Cµ
k2

ε
. (38)

The mixture density from the original expression was replaced with the
density function

f (ρ) = ρv +

(

pv − ρm

pv − ρl

)n

(pl − ρv) . (39)

The initial value of the bubble radius, R, just as in Kubota model [12], was
set to 1 × 10−6 m and the value of the nucleation site of volume fraction,
αnuc, to 5×10−4. The Zwart et al. model is intended for three-dimensional
unsteady cavitating flows. The authors presented three validation exam-
ples. The first example is an analysis of the cavitating flow around a hy-
drofoil. The second example presents results of simulation of the cavitating
flow through an inducer and the last one through a venturi.

Senocack and Shyy [17] suggested coupling of source terms with a pressure-
based algorithm. The pressure-based algorithm consists of a pressure-
velocity-density coupling scheme that uses an upwind density interpolation.
The applied source terms

ṁ+ =
(1 − αl) (p − psat) ρv

(uv,n − uI,n)2 (ρl − ρv) t∞
, p > psat , (40)

ṁ− = − ρlαl (psat − p)

(uv,n − uI,n)2 (ρl − ρv) t∞
, p < psat (41)

approximate in form to the source terms presented by Kunz in 1999. The
presented model is called the ‘interfacial dynamics cavitation model’ (IDM).
In numerical simulations, the authors applied the k-ε turbulence model.
Senocack and Shyy [17] evaluated their model for three most popular ap-
plications. To these applications belongs the flow around a cylindrical body
and a planar NACA MOD 66 hydrofoil at an angle of attack of 4◦, and a
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flow through a convergent-divergent nozzle. The model is intended for two-
dimensional unsteady flow simulations. For unsteady numerical analyses
it shows a better agreement with experimental measurements than in the
case of steady-state.

The starting point in the development of a new transport equation for
Wu et al. [28] was the model proposed by Senocack and Shyy in 2004 –
Eqs. (40) and (41). Wu et al. estimated the interfacial velocity by applying
an approximate procedure. Additionally, they used correlations between
the net interface velocity, unet

I,n, and the mass transfer, ṁ,

unet
I,nA = ṁ+ + ṁ− , (42)

and correlation between the net interface velocity unet
I,n, and the flow field

local velocity, uLocal
I,n ,

(uv,n − uI,n)2 =
[

uv,n −
(

unet
I,n + uLocal

I,n

)]2
= unet2

I,n (43)

to achieve the final form of their form of mass transfer rates

ṁ+ =
(1 − αl) (p − psat) ρv
(

unet
I,n

)2
(ρl − ρv) t∞

, p > psat , (44)

ṁ− = − ρlαl (psat − p)
(

unet
I,n

)2
(ρl − ρv) t∞

, p < psat . (45)

The value of the flow field local velocity, uLocal
I,n , is equal to the value of

the vapor phase normal velocity, uv,n. Wu et al. [28], like Senocack and
Shyy [17], intended their model for unsteady two-dimensional flows. They
evaluated their model in simulations of cavitating flow around Clark-Y
airfoil at two angles of attack, 5◦ and 8◦.

In 2006 Merkle et al. [29] presented a new homogeneous model which
mass transfer rates are defined as

ṁ+ = kl
ρvαl

t∞

(

p − psat

kppv

)

, p > psat , (46)

ṁ− = −kv
ρvαl

t∞

(

psat − p

kppv

)

, p < psat . (47)

The form is distinguished from the all above mentioned models through
appearance of two scaling constants kv, kl, and kp – a factor given as small
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as possible. The values were set in numerical calculations [30] as follow:
kv = 100.0, kv/kl = 15.0 and kp = 0.02. Park et al. validated their model
using unsteady three-dimensional simulations of cavitating flow over cylin-
ders with 0-, 1/2- and 1-caliber forebody.

Since 2011 researches have been looking for new ways to solve the prob-
lem of the insufficient capability of cavitation prediction. Their research
area is no more only equations of bubble dynamics or well-known phys-
ical relationships between vapour and liquid fraction in fluid. Scientists
wish to find the solution of problems with prediction of cavitation through
connecting this phenomenon with other physical parameters or complex
mathematical formulae.

Huang and Wang in 2011 [31] described a new innovative solution of
mass transfer rates

ṁ+ = χ (ρm/ρl) ṁ+
Z + (1 − χ (ρm/ρl)) ṁ+

S , p > psat , (48)

ṁ− = −χ (ρm/ρl) ṁ−
Z + (1 − χ (ρm/ρl)) ṁ−

S , p < psat . (49)

Their approach to formulate the transport equation consists of using of
a blending function χ(ρm/ρl)

χ

(

ρm

ρl

)

= 0.5 +

tanh





C1

(

0.6ρm
ρl

−C2

)

0.2(1−2C2)+C2





[2 tanh (C1)]
. (50)

The authors additionally combined the blending function with the expres-
sions of source terms of Zwart ṁ−

Z , ṁ+
Z [27] and Schnerr and Sauer ṁ−

S ,
ṁ+

S [22]. The values of the model constants C1 and C2 are set to 4 and
0.2. Huang and Wang [31] tested their model for unsteady flows around
Clark-Y hydrofoil.

Goncalves presented in 2014 [32] the first version of transport equation
which has a form that includes two quantities not used before: the speed
of sound, c, and the propagation of acoustic waves without mass transfer,
cwallis. These are connected through a following relationship

1

ρc2
wallis

=
α

ρvc2
v

+
1 − α

ρlc
2
l

. (51)

The use of correlation between the sound speed and the thermodynamic
equilibrium was an idea with good physical reasoning. good idea, but the
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proposed form of transport equation required the introduction of changes.
In 2014 Goncalves and Charrière showed the modified version of mass trans-
fer rates

ṁ+ =
ρlρv

ρl − ρv

(

1 − c2

c2
wallis

)

div u − Cp
ρv

ρl
αl

(p − psat)

0.5ρlu2
∞

, p > psat , (52)

ṁ− =
ρlρv

ρl − ρv

(

1 − c2

c2
wallis

)

div u , p < psat . (53)

The authors performed computations for two examples of unsteady two-
dimensional cavitating flows: underwater explosion with cavitation and
flow through a venturi.

In 2015 some scientists revisited the Rayleigh-Plesset equation Eq. (1)
and tried to formulate a new equation which on the one hand describes
the bubble dynamic with more precision and on the other hand has not
any negative influence on the calculations stability. The team of Russian
researchers [33] emphasized the relationship between the bubble radius and
the Reynolds number, which lead to a new form of the dynamic component
of transport equation

dR

dt
= tanh



1.221

(

R
√

|psat − p| ρ

4µ

)0.353




√

2

3

|psat − p|
ρl

. (54)

Konstantinov et al. [33] combined the new dynamic component with the
static component from the mass transfer rates proposed by Zwart et al.
[27] and obtained new source terms

ṁ+ = Cp
3αvρv

R
tanh



1.221

(

R
√

(psat − p) ρ

4µ

)0.35




√

2

3

(psat − p)

ρl
, p > psat,

(55)

ṁ− = −Cd
3ρv (1 − αv) αnuc

R
×

tanh



1.221

(

R
√

(p − psat) ρ

4µ

)0.35




√

2

3

(p − psat)

ρl
, p < psat (56)

and validated the new model in unsteady flow simulations of a jet element
‘pipe-pipe’.

 - 10.1515/aoter-2016-0013
Downloaded from PubFactory at 08/16/2016 09:36:23AM

via free access



Review of numerical models of cavitating flows. . . 85

3 Conclusion

This article presents an exhaustive overview of the homogeneous models
of cavitating flows since 1992 until today. The focus of research works is
still the same – the correct prediction of the occurrence of cavitation. The
main starting point for the transport based homogeneous models was the
Rayleigh-Plesset equation, which considers dynamics of a single bubble. In
numerous cases, by applying of the equation, no account is taken of surface
tension and viscosity terms. Current cavitating flow modeling techniques
to predict the behaviour of the whole cavitating flow go far beyond the
basic equation. They consider, for example, the influence of the speed of
sound or introduce a blending function in transport equation. The descrip-
tions of each model are accompanied by essential equations and values of
quantities used by the authors in their calculations. The appendix contains
the table of empirical coefficients used in the selected transport equation
based cavitation models. It should be emphasized that the value of empir-
ical coefficient can change for specific terms and the nuclei concentration
n0 and the initial bubble radius, R, are also not fixed values, but depend
on many conditions.

It follows from the presented survey that in the numerical simulations
of cavitating flows a trend to carry out unsteady flow simulations and us-
ing of three-dimensional models is seen. The progress in this directions is
expected to be achieved. On the one hand the predictions of the results
have a better accuracy for three-dimensional models and on the other hand
there is a better scope for access to more efficient computer resources. Un-
steady flow simulations allow monitoring of the development of cavitating
region and its changes in time, which is necessary because of the dynamic
character of the phenomenon. Hydrofoils predominate in the analysed val-
idation examples of the proposed models. The next place is taken by ven-
turis and cylinders. A summary of the most common application areas
of the analysed cavitation models is presented in Tab. 2 of the appendix.
It results from these data that the majority of the models can be used in
two-dimensional simulations and since 2003 the models are intended for
unsteady flow computations. For the analyses of the flow through venturis
there are also a few possible models to be used like Schnerr and Sauer or
Zwart et al. models, for example. For the flow over a cylinder the older
models, like Merkle et al., Kunz et al. or Singhal et al. models, can be
recommended.

Received 18 February 2016
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Appendix

The appendix contains the table of empirical coefficients used in the chosen transport
equation based cavitation models.

Table 1: List of empirical coefficient used in the chosen transport equation based cavita-
tion models.

Lp. Name of the first authors Cp Cd

1. Kubota (1992) 50 0.01
2. Merkle (1998) 1 80
3. Kunz (2000) 0.2 0.2
4. Schnerr and Sauer (2001) – –
5. Iben (2000) >1 –
6. Singhal (2002) 0.02 0.01
7. Frobenius (2003) 50 0.02
8. Saito (2003) Y Y
10. Zwart (2004) 50 0.01
9. Senocack and Shyy (2004) Y Y
11. Wu (2005) – –
12. Merkle (2006) – –
13. Huang and Wang (2011) – –
14. Goncalves (2014) – Y
15. Konstantinov (2015) 50 0.01

Y – no sufficient data

Table 2: Comparison of application areas of the presented cavitation models.

Name of the Two-dimen- Three-di- Steady-state Unsteady
Hydrofoil Venturi Cylinder

first author sional mensional simulation simulation

Kubota X X X
Merkle X X X X X
Kunz X X X X
Schnerr X X X X
Iben X X
Singhal X X X X
Frobenius X X X X X
Saito X X X X X
Zwart X X X X
Senocack X X X X X
Wu X X X
Merkle X X X
Huang X X X
Goncalves X X X
Konstantinov X X X
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