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Application of adaptive multivariable Generalized
Predictive Control to a HVAC system in real time

MARTIN GULAN, MICHAL SALAJ and BORIS ROHAL’-ILKIV

This paper presents the application of a Multivariable Generalized Predictive Controller
(MGPC) for simultaneous temperature and humidity control in a Heating, Ventilating and Air-
Conditioning (HVAC) system. The multivariable controlled process dynamics is modeled using
a set of MISO models on-line identified from measured input-output process data. The controller
synthesis is based on direct optimization of selected quadratic cost function with respect to
amplitude and rate input constraints. Efficacy of the proposed adaptive MGPC algorithm is
experimentally demonstrated on a laboratory-scale model of HVAC system. To control the air-
conditioning part of system the designed multivariable predictive controller is considered in a
cascade dual-rate control scheme with PID auxiliary controllers.

Key words: predictive control, multivariable systems, constrained optimization, HVAC
system, cascade control

1. Introduction

With regard to the world-wide trend in energy saving it is of a great importance to
study and develop new, modern and intelligent methods of building control. A very com-
mon control problem forms creating of a thermal comfort in heated and air-conditioned
rooms with a minimal energy input. This task brings many problems such as variable-
ness and non-linearity of the controlled process, and presence of disturbances, mainly
of random character. In this case classic methods cannot ensure optimal control. An
employment of modern control algorithms is one alternative.

Previous research projects have established a foundation of process models and con-
trol strategies suitable for building HVAC systems. Good results were obtained with
application of PID auto-tuning controllers [19], neural network techniques [3], and even
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genetic algorithms [13]. In [15] an application of SISO-MISO self-tuning control of en-
vironmental conditions is proposed. The possible use of the control algorithm was tested
using the data obtained from the non-linear mathematical model in which interaction
between the variables of relative humidity and temperature is considered.

Pioneered by [12], GPC belongs to a wide class of Model Predictive Control (MPC)
methods. It incorporates all major features of the predictive controllers in an unified
framework and offers advantages such as ability to stabilize and control nonminimum-
phase, variable or unknown dead-time, open-loop unstable processes and also plants with
unknown orders. Over the years, GPC has proven to be very effective when requirements
on the robustness and performance are hard to achieve with traditional designs [17].

This paper deals mainly with the extension of the GPC design to the multivariable
case which is the nature of most industrial processes. Multivariable or multiloop GPC
takes into consideration interactions between loops what improves control performance
[2, 5], unlike e.g. the use of multiple single loop controllers, mostly PID, which is the
simplest, however often not satisfactory solution. Hence to simplify the procedure of
deriving of prediction equations a strategy of MIMO model decomposition to a set of
multi-input single-output (MISO) CARIMA input-output models is proposed.

The case study developed in this work focuses on a possible application of predictive
control methods, namely GPC, to control of air-conditioning processes. The implemen-
tation of the proposed MGPC controller into the process is realized by a cascade scheme.
The inner loops of the scheme governed by PSD controllers, so-called servo loops, en-
sure desired settings of regulated variables (e.g. flow of the vapour from humidifier, or
temperature of the air at the heater output). The control algorithm makes use of an incre-
mental CARIMA model in which interaction between the variables of relative humid-
ity and temperature is considered. The properties of the tested control algorithm were
supported by a robust recursive parameter estimation scheme used for the on-line iden-
tification of the plant model. The resulting system stability is guaranteed via choice of
a reasonably long prediction horizon. Experimental verification of the proposed control
algorithm was executed on a HVAC plant constructed at the authors’ department.

2. Multivariable Generalized Predictive Control

The objective of the predictive control law is to drive future plant outputs as close to
the reference value as possible. Thus, a predictive controller is based on the following
concepts [18]:

• using a representative mathematical model of the plant dynamics obtained by
physical modelling or a system identification procedure,

• predicting future plant dynamics,

• expressing the process optimality by an appropriate cost function of the future
errors and controls,
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• predicting cost of future plant dynamics,

• minimizing the cost function (optimal control),

• and finally applying a receding horizon control strategy.

The main idea of a generalized predictive control algorithm based on an on-line
identification procedure is schematically illustrated in Fig. 1. As shown, GPC can be thus
viewed as a form of a feedback control algorithm, where instead of a fixed feedback law
a dynamic optimization process determines inputs based on actual measurements [18].

Figure 1. Block diagram of an indirect adaptive GPC controller.

In the following subsections an approach to the design of an adaptive multivariable
GPC controller is presented.

2.1. Multivariable CARIMA model and objective function

Let the controlled process to be a m-input, n-output linear system which can be
described by a discrete MIMO model. To satisfy the control objective in GPC, a mul-
tivariable CARIMA (Controlled Auto-Regressive Integrated Moving Average) process
model is utilized to represent the plant dynamics. To ensure effective integral action in a
predictive control law, its incremental form

A(q−1)∆yk = q−dB(q−1)∆uk−1 +C (q−1)ξξξk (1)

is used, as it allows offset free predictions in the steady state [16]. This can be subse-
quently rewritten as

A(q−1)yk = q−dB(q−1)uk−1 +
C (q−1)

∆
ξξξk, (2)

where quantities yk = [y1(k), . . . ,yn(k)]T ∈ Rn, uk = [u1(k), . . . ,um(k)]T ∈ Rm and ξξξk =
[ξ1(k), . . . ,ξn(k)]T ∈Rn are the output, input and zero-mean white noise vectors, respec-
tively, ∆ = 1− q−1 is the difference operator and d is the dead time1 of the process

1For simplicity in the development, d is chosen to be zero.
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dynamics. A ∈ Rn×n, B ∈ Rn×m and C ∈ Rn×n are adequate polynomial matrices in
backward shift operator q−1, whose elements are polynomials, i.e.:

Aii(q−1) = 1+(a1)iiq−1 + · · ·+(anAii
)iiq−nAii

Bil(q−1) = (b0)il +(b1)ilq−1 + · · ·+(bnBil
)ilq−nBil (3)

Cii(q−1) = 1+(c1)iiq−1 + · · ·+(cnCii
)iiq−nCii i = 1,2, . . . ,n, l = 1,2, . . . ,m

with nAii = δ(Aii), nBil , nCii indicating their respective order. In the following, the argu-
ment q−1 is dropped for brevity.

As it will be demonstrated later, by applying MGPC such a control sequence can be
obtained that drives the future outputs as close as possible to a reference within defined
horizon. This is attained by minimization of a multistage cost function of the following
form:

J(k) =
N2i

∑
j=N1i

n

∑
i=1

δi( j)
[
ŷi(k+ j | k)−wi(k+ j)

]2
+

Nul

∑
j=1

m

∑
l=1

λl( j)
[
∆ul(k+ j−1)

]2 (4)

The first term in (4) corresponds to the difference between an optimal predicted sequence
of the system output ŷ(k+ j | k) conditioned on data known up to a discrete time (k) and
a future set-point sequence w(k+ j) for controlled variables. The second term consists
of a weighted sequence of the future control input increments ∆u(k + j− 1) obtained
from the minimization of the finite horizon quadratic criterion (4). N1i and N2i are the
minimum and maximum prediction horizons for the scalar output y j, and Nul is the con-
trol horizon over all future inputs u j, which affect the outputs included in J. To penalize
future tracking errors and control increments along the horizons, appropriate weighting
sequences δi( j) and λl( j) are defined as well. Eq. (4) can be equivalently2 expressed as:

J(k) =
N2

∑
j=N1

∥ŷk+ j|k−wk+ j∥2
Qδ( j)+

Nu

∑
j=1
∥∆uk+ j−1∥2

Qλ( j) (5)

or in a more condensed vector/matrix form

J = ∥ ŷ
−→
− w−→∥

2
Qδ

+∥∆ u−→∥
2
Qλ
, (6)

2Let us assume that prediction/control horizons for particular outputs/inputs are equal, i.e. N2 = N2i ,
N1 = N1i , Nu = Nul , ∀i ∈ [1,n],∀l ∈ [1,m].
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where the augmented vectors3

ŷ
−→

=
[
ŷT

k+N1
. . . ŷT

k+N2

]T
∈ Rn(N2−N1+1)

w−→=
[
wT

k+N1
. . . wT

k+N2

]T
∈ Rn(N2−N1+1)

∆ u−→=
[
∆uT

k . . . ∆uT
k+Nu−1

]T
∈ RmNu

(7)

can be obtained by stacking the sub-vectors

ŷk+ j|k =
[
ŷ1(k+ j | k) . . . ŷn(k+ j | k)

]T
∈ Rn

wk+ j =
[
w1(k+ j) . . . wn(k+ j)

]T
∈ Rn

∆uk+ j−1 =
[
∆u1(k+ j−1) . . . ∆um(k+ j−1)

]T
∈ Rm.

(8)

Qδ and Qλ are appropriate symmetric positive-(semi)definite weighting matrices for se-
quences of predicted control errors and future control input increments, respectively,
given by

Qδ = diag{Qδ(N1), . . . ,Qδ(N2)} ∈ Sn(N2−N1+1)
+

Qλ = diag{Qλ(1), . . . ,Qλ(Nu)} ∈ SmNu
++

(9)

where Qδ( j) = diag{δ1( j), . . . ,δn( j)} and Qλ( j) = diag{λ1( j), . . . ,λm( j)}.

Since the MIMO model (1) leads to solving matrix Diophantine equations, it is not
convenient concerning computational difficulties with deriving j-step-ahead predictor. In
the next subsection a technique is shown, which rejects this problem and hence simplifies
derivation of prediction equations.

2.2. MIMO model decomposition

In this work, from this point forward, square m×m systems are considered and a
diagonal structure of polynomial matrices A and C is assumed, i.e. A = diag{Aii}, C =
diag{Cii}, ∀i ∈ [1,m]. As a result of this assumption, model (2) can be considered as a
set of m MISO processes (see Fig. 2) of form:

Aiiyi(k) = Biuk−1+
Cii

∆
ξi(k), i = 1, . . . ,m (10)

where Bi is the i-th row of B , i.e. Bi = [Bi1 . . .Bim].

3The notations of arrows pointing right/left is used for a vector of future/past values, possibly including
current value according to the context. Notice also that throughout the paper bold lower case is used to
denote vectors and non-bold lower case implies a scalar quantity.
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Figure 2. Basic idea of a m×m MIMO model decomposition. Clearly, the same strategy can be applied to a
m×n process.

Although the proposed model is not of general form, it is suitable for adequate rep-
resentation of most real processes [4]. Deterministic parts of both MIMO and MISO de-
scriptions4 are equivalent, therefore the transformation depends on noise properties [8].
Main benefits of the above introduced form lie in the following:

• output predictions based on MISO models are possible to perform in a way similar
to the SISO case [1],

• number of estimated parameters of MISO model (10) is smaller than in MIMO
case (2) with full A and C , which is most desirable in adaptive applications when
on-line estimators are used [4],

• proposed structure considerably simplifies MIMO controller implementation.

From the previous it follows that for a 2×2 process one gets:[
A11 0
0 A22

]
︸ ︷︷ ︸

A

[
y1(k)
y2(k)

]
︸ ︷︷ ︸

yk

=

[
B11 B12

B21 B22

]
︸ ︷︷ ︸

B

[
u1(k−1)
u2(k−1)

]
︸ ︷︷ ︸

uk−1

+
1
∆

[
C11 0
0 C22

]
︸ ︷︷ ︸

C

[
ξ1(k)
ξ2(k)

]
︸ ︷︷ ︸

ξξξk

(11)

where

A =

[
1 0
0 1

]
+

[
(a1)11 0

0 (a1)22

]
q−1+· · ·+

[
(anA)11 0

0 (anA)22

]
q−nA ,

4Terms such as “full” multivariable and “distributed” GPC can be also found in the literature, see e.g.
[11].
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B =

[
(b0)11 (b0)12

(b0)21 (b0)22

]
+

[
(b1)11 (b1)12

(b1)21 (b1)22

]
q−1+. . .

[
(bnB)11 (bnB)12

(bnB)21 (bnB)22

]
q−nB.

In general, the monic polynomial matrix C is chosen equal to the identity matrix be-
cause of the difficulties in identifying the characteristics of noise [14]. Its identification
is therefore assumed not necessary here.

Notice also that nA = nAii , nB = nBil is assumed.

2.3. On-line identification algorithm

The next stage in the application of GPC adaptive control strategy is the on-line
identification of process model parameters (coefficients of Aii and Bil polynomials). This
is the so-called “self-tuning” phase that distinguishes adaptive control from controllers
based on off-line analysis and design. Here, adaptation is achieved by using two MISO
recursive least squares (RLS) estimators modified for a practical application by intro-
ducing forgetting of the non-informative data. Methods based on this principle can be
viewed as a special case of the following general forgetting algorithm which can be
divided into two independent parts [10]:

- data-update iteration

θ̂θθk|k = θ̂θθk|k−1+
Pk|k−1ϕϕϕk

σ2+ϕϕϕT
k Pk|k−1ϕϕϕk

êk|k−1 (12a)

P−1
k|k = P−1

k|k−1+
ϕϕϕkϕϕϕT

k

σ2 (12b)

- time-update iteration

θ̂θθk+1|k = θ̂θθk|k (13a)

Pk+1|k = F{Pk|k},( Pk|k) (13b)

where θ̂θθk is the parameter estimates vector, ϕϕϕk is regression vector, Pk denotes covariance
matrix of the estimates, and

êk|k−1 = yk−θ̂θθ
T
k|k−1ϕϕϕk (14)

is the a priori estimation error.
Forgetting itself is introduced via a reasonable choice of forgetting operator F{.},

i.e. in the time update of the covariance matrix P. Since the plant is time-varying, the use
of a forgetting factor prevents the eigenvalues of P tending to zero and hence avoids a
possible numerical destabilization of the algorithm. The RLS estimation scheme utilized
in this work assumes so-called “directional” forgetting proposed in [9].
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2.4. Design of a MIMO predictor

Output predictions based on CARIMA models are carried out in a way similar to the
SISO case, by the use of recursive Diophantine equations or direct iteration5 of

C−1A(q−1)∆yk = C−1B(q−1)∆uk−1 (15)

under the assumption that the future white noise is zero [4].
As the matrix A is diagonal the Diophantine equations that may be used to obtain

the optimal prediction of each output can also be solved independently for each output,
thus the one-output m-input CARIMA model is used [14]. Substituting (k+ j) for (k) in
(10) and multiplying by Ei, j yields:

Ei, jAii∆yi(k+ j |k) = Ei, jBi∆uk+ j−1+Ei, jξi(k+ j) (16)

Using the solution of the first Diophantine equation,

1 = Ei, jAii∆+q− jFi, j (17)

in (18) leads to

yi(k+ j |k) = Fi, jyi(k)+
m

∑
l=1

Ei, jBil∆ul(k+ j−1)+Ei, jξi(k+ j) (18)

where Ei, j(q−1) and Fi, j(q−1) are polynomials of order j−1 and nA−1, respectively.
In order to split up the j-step-ahead predictor (18) in parts that are known at time (k)

and future signals, the second Diophantine equation,

Ei, jBil = Gil, j +q− jGpil, j (19)

is introduced, resulting in

ŷi(k+ j |k) =
m

∑
l=1

Gil, j∆ul(k+ j−1)+
m

∑
l=1

Gpil, j ∆ul(k−1) + Fi, jyi(k) (20)

where the term Gi, j∆uk+ j−1 represents the forced response and the last two terms de-
noted as fi(k+ j) = Gpi, j ∆uk−1+Fi, jyi(k) are the free response of the process. Notice
also that the last term in (18) involving future noise ξi(k+ j) is omitted in (20) since it
is assumed to be a discrete zero-mean white noise. Thus ŷi(k+ j |k) denotes an estimate
of yi(k+ j |k).

For further use, it is preferable to collect all the j-step-ahead predictors (for j =
N1 . . .N2) for all m MISO processes in the following vector/matrix notation:

ŷ
−→

= G∆ u−→+ f−→ (21)

5In an adaptive context, direct iterating forward in time results in a significant computational saving
compared to the Diophantine equation approach and from the coding point of view can be effectively applied
by the use of Toeplitz/Hankel matrix algebra as shown e.g. in [16, 7].
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where the free response sequence f−→ can be obtained as

f−→= Gp∆uk−1+Fyk,

and which considers the following quantities:

G =


G(N1) G(N1−1) · · · 0m×m

G(N1+1) G(N1) · · · 0m×m
...

...
. . .

...
G(N2) G(N2−1) . . . G(N2−Nu+1)

 ∈ Rm(N2−N1+1)×mNu

G( j) =


g11( j) · · · g1m( j)

...
. . .

...
gm1( j) · · · gmm( j)

 ∈ Rm×m,

f−→=
[
fT
k+N1

. . . fT
k+N2

]T
∈ Rm(N2−N1+1)

fk+ j|k =
[

f1(k+ j) . . . fm(k+ j)
]T
∈ Rm,

where gil( j) is the j-th step response coefficient of the transfer function relating the i-th
output to the l-th input.

Similarly, Gp,F∈Rm(N2−N1+1)×m are polynomial matrices consisting of polynomials
Gpil, j(q

−1) and Fi, j(q−1). Orders of Gil, j and Gpil, j are j−1 and nB−1, respectively.

2.5. MGPC control law

The system output prediction sequence, ŷ
−→

, given by (21) can be used in the cost
function (6), which subsequently yields

J = ∆ u−→
T H∆ u−→+2gT ∆ u−→+ f0 (22)

where
H = GT QδG+Qλ

g = GT Qδ( f−→− w−→)

f0 = ( f−→− w−→)T ( f−→− w−→).

2.5.1. Unconstrained formulation

The necessary condition for finding the unconstrained solution of the MGPC con-
troller,

∆u∗−→= argmin
∆ u−→

J (23)
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is obtained by setting the gradient of (22) to zero with respect to ∆ u−→, that is

∂J
∂∆ u−→

= H∆ u−→+g = 0 (24)

which results in a closed form control law

∆u∗−→=−H−1g =
[
GT QδG+Qλ

]−1GT Qδ(w−→− f−→) (25)

Finally, in accordance with the receding horizon strategy, at the current sample time
(k) only the first part of this solution, i.e. the first block element6 of the optimal sequence
of future input moves, ∆u∗−→,

∆u∗k =
[
Im 0m×m . . . 0m×m︸ ︷︷ ︸

(Nu−1)times

]
∆u∗−→ (26)

is utilized and effectively applied to the plant. At the next step (k+1) the whole process
is repeated, shifting the horizon one step further.

2.5.2. Constrained formulation

When dealing with input constraints, it is no longer possible to express the solu-
tion explicitly in a closed form as before. Instead, an optimization procedure has to be
performed at each sampling instant (k), repeatedly solving a constrained minimization
problem in the form:

min
∆ u−→∈Uad

{J(∆ u−→)}= min
∆ u−→∈Uad

{∆ u−→
T H∆ u−→+2gT ∆ u−→+ f0} (27)

where Uad ⊂ Rm is a compact set of admissible control signal increments that imply
satisfying the following constraints:

6Recall that in our multiple-input case this is given by a vector of two control inputs ∆uk =[
∆u1(k) ∆u2(k)

]T
which equals the first m wide block row of −H−1g.
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∆u
∆u
...

∆u


︸ ︷︷ ︸

∆U

¬


∆uk|k

∆uk+1|k
...

∆uk+Nu−1|k


︸ ︷︷ ︸

∆ u−→

¬


∆u
∆u
...

∆u


︸ ︷︷ ︸

∆U
u
u
...
u


︸︷︷︸

U

¬


uk|k

uk+1|k
...

uk+Nu−1|k


︸ ︷︷ ︸

u−→

¬


u
u
...
u


︸︷︷︸

U
y
y
...
y


︸︷︷︸

Y

¬


ŷk+N1|k

ŷk+N1+1|k
...

ŷk+N2|k


︸ ︷︷ ︸

ŷ
−→

¬


y
y
...
y


︸︷︷︸

Y

(28)

where ∆u,∆u, u,u and y,y are the lower/upper rate and amplitude control input, and
output bounds, respectively. It is easy to see that

u−→=


Im . . . . . . 0m×m

Im Im
...

...
...

. . .
...

Im Im . . . Im


︸ ︷︷ ︸

CI/∆∈RmNu×mNu

∆ u−→+


Im

Im
...

Im


︸ ︷︷ ︸

L∈RmNu×m

uk−1 (29)

where Im denotes an identity matrix and 0m×m a zero square matrix of size equivalent to
the number of inputs m.

Numerical solution of (27) yields a quadratic programming problem of the following
form:

minimize
∆ u−→

1
2

∆ u−→
T H∆ u−→+gT ∆ u−→ (30a)

subject to C∆ u−→≼ dk (30b)
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where

C =



II

−II

CI/∆

−CI/∆

G
−G


; dk =



∆U
−∆U

U−Luk−1

−U+Luk−1

Y−Gp∆uk−1−Fyk

−Y+Gp∆uk−1+Fyk


. (31)

In (30a), H ∈ SmNu
++ is the positive-definite Hessian matrix and g ∈ RmNu is the gradient

vector. II = diag(Im . . .Im)∈ SmNu denotes a block diagonal matrix defined with Nu-times
repeated matrix Im. From the previous it is clear that constraints (30b) together give a
set of 2m(2Nu+N) linear inequalities, where N = N2−N1+1. It is also evident that dk
depends upon past input information and C is time invariant.

To evaluate this constrained minimization quadratic problem (QP) the qpOASES
on-line active set solver developed by Ferreau et al. [6] was utilized. Since the MGPC
formulation uses variable model parameters identified on-line at each time step (k), the
QP matrix H and vector g are varying from one QP to the next as well. Hence, the on-line
optimization task can be effectively solved by using the sequential module of qpOASES,
as shown e.g. in [7].

The resulting optimizing control sequence ∆ u−→ is subjected to the receding horizon
control strategy in a similar fashion as in the unconstrained case, i.e. by selecting only
the control inputs, ∆u∗k , corresponding to current time instant (k). Notice also that in the
control task presented further the absolute value of control inputs is needed, and can be
determined as

uk|k = ∆uk|k+uk−1 (32)

The experimental results presented in Section 3 consider the above derived constrained
MGPC algorithm.

3. Case study: HVAC system control

This section presents experimental results of the proposed adaptive MGPC strategy,
applied on a working real-life model of the HVAC system, in order to demonstrate its
performance in a temperature and humidity tracking application by applying appropriate
control actions determined by the GPC algorithm.

3.1. Laboratory plant description

The system itself is schematically illustrated in Fig. 3. It consists of a scaled room
in which the air can be prepared by heating or air-conditioning. The reference room is
placed in another box, and thus creating the so-called interspace which is used for sim-
ulating outside temperature changes and other effects such as sunlight or shifting wind.
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Figure 3. Simplified scheme of the laboratory HVAC system. The heating part and air-conditioning part
of the system are depicted in red and cyan colour, respectively. The star marks (⋆) refer to the position of
sensors.

The red and cyan colour are used to distinguish its heating and air-conditioning part,
respectively. The control of these two independent processes represents two particular
control tasks being usually practised on the HVAC systems. Please notice that the expla-
nations given further are valid for the latter since it is as a MIMO process in scope of this
work. The measurement setup consists of 22 thermal sensors and two sensors of relative
humidity situated in the reference room.

The air-conditioning problem was considered as a two-input two-output process,
where water temperature in the humidifier, u1(k), and air flow temperature behind the
heating spiral, u2(k), are the input variables and relative humidity, y1(k), and tempera-
ture, y2(k), inside the reference room are the output variables. The temperature in refer-
ence room can be manipulated with two independent variables, temperature behind the
spiral in heater and rate of airflow. However, for experimental purposes only the former
with given physical constraints was considered while the latter was kept constant. The
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Figure 4. Dual-rate block scheme interpreting the cascade control of the air-conditioning part of HVAC
laboratory plant. The light and dark gray colour denote the part of control algorithm with higher and lower
sampling rate, respectively.

relative humidity in reference room depends on temperature of water in humidifier and
also on temperature behind the heating spiral. Since the process of heating and cooling
water in humidifier is strongly non-linear, what could introduce many problems in sys-
tem identification, a solution through injection of cold water into humidifier is proposed.

3.2. Cascade control scheme

The practical implementation of the designed adaptive multivariable GPC algorithm
leads to a specific dual-rate control system operating under two frequencies - a so-called
cascade control scheme. It consists of a main loop governed by the proposed multivari-
able predictive controller with sampling time kT , which calculates the desired values for
two inner loops with sampling time T . Each of these two is controlled by means of a
fixed digital PID (PSD) controller. An incremental (also referred to as a velocity) algo-
rithm is used to calculate the controller output value ũ(k) from a previously recorded
value ũ(k−1) plus correction increment ∆ũ(k) as follows:

ũWT(k) = ∆ũWT(k)+ũWT(k−1) (33a)

ũWT(k) = KP

{
eWT(k)−eWT(k−1)+

T
TI

eWT(k)

+
TD

T

[
eWT(k)−2eWT(k−1)+eWT(k−2)

]}
+ũWT(k−1) (33b)

where KP, TI and TD are the proportional gain, the integral time and the derivative time,
respectively. The control error is given as

eWT(k) = wWT(k)−yWT(k) (34)
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where yWT(k) is the measured water temperature in the humidifier and wWT(k) is its
desired value calculated previously by the constrained GPC algorithm, i.e. wWT ≡ uGPC

1 .
Notice that Eq. (33)-(34) are valid for the water temperature (WT) loop. Clearly, a

control law for the air flow temperature (FT) loop can be derived in a similar way. The
cascade control scheme of the HVAC plant is depicted in Fig. 4.

Control signals ũWT and ũFT are subsequently saturated (with adequate amplitude and
increment bounds) and applied to the spiral in humidifier and heater, respectively.

3.3. Experimental results

The following experiments represent changes of humidity and temperature set points
in the reference room. In general, each experimental run can be divided into three con-
secutive phases. During the first, start-up phase the laboratory plant is achieving steady
state around the operation points. The second one is a properly chosen learning phase
using acquired data, which gives us a preliminary estimation of CARIMA model param-
eters. For this purpose pseudo-random sequences are applied to both inputs7, with levels
appropriately chosen to excite all relevant modes of the system and such that the process
outputs vary within the normal operating region of the process. This procedure makes
the start of the controller more reliable and bumpless. The third phase finally shows
the results of the tuned multivariable adaptive constrained GPC controller in a cascade
scheme with PSD controllers.

Number of real-time experiments8 had been carried out in order to select parameters
that would provide the desired controller performance. Finally, the following values of
design parameters were set: sampling times T = 3.5s (inner loops), Tc = 17T (main
loop), horizons N1 = 1, N2 = 15, Nu = 3, dead time d = 0, and weights [δ1,δ2] = [1,1],
[λ1,λ2] = [1,10]. PSD controller parameters were set as KP = 50, TI = 120 and TD = 0.
Orders of the model polynomials are nA = 5, nB = 5. Bounds used in minimization of
the cost function are u = [50 26]T , u = [95 45]T , ∆u = [−5.5 −2.5]T , ∆u = [5.5 3]T ,
y = [50 20]T and y = [65 30]T .

The experimental results for the air-conditioning part of the HVAC system are de-
picted in Fig. 5. The start-up phase I (first 60 samples) is followed by the learning phase
II (61−560), and finally the phase III (561−8000), which demonstrates the good per-
formance and robustness of the proposed controller. It also emphasizes the necessity of
explicitly taking into account the natural constraints of the actuators. In this case stability
is guaranteed via choice of a reasonably long prediction horizon.

The adaptation loop updates on-line an input-output process model, which allows a
good behaviour of the control algorithm for different setpoints (w1 = 55−60%, w2 =
24−28◦C).

7More precisely, set as desired values (wWT,wFT) for the PSD controllers.
8Duration of one experimental run such as depicted in Fig. 5 was approximately 7.5 hours. The interface

between MATLAB/Simulink model and I/O boards was performed under xPC Target rapid prototyping
system.
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Figure 5. Experimental results for the air-conditioning part of the laboratory HVAC system.
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Notice also that in the first phase temperature in interspace, tIS, drops under 10◦C,
which represents temperature losses of the reference room and thus acts as a disturbance.
During the other two phases it changes with respect to its reference by means of on-off
control. The outside temperature, tOUT, is shown as well.

4. Conclusion

In this paper, we have developed a multivariable adaptive control algorithm based
on generalized predictive control that explicitly takes into account constraints on the
actuators.

We have emphasized the practical aspects of the proposed control algorithm through
a case study concerning temperature and humidity control of a laboratory HVAC sys-
tem. This process has some interesting features, at least from the control point of view:
multi-input multi-output system with strong couplings, non-linearities, saturations on the
actuators, dynamics varying with the setpoint and disturbances.

The proposed control algorithm is shown to perform very satisfactorily, which is due
to the adaptation and appropriateness of the algorithm to this particular process.
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