PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Białka uczestniczące w transporcie jonów żelaza(II) w bakteriach gram-ujemnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Proteins involved in the ferrous ions transport in gram-negative bacteria
Języki publikacji
PL
Abstrakty
EN
Continuous increase in the number of multidrug-resistant strains forces us to look for drugs with completely new mode of action. One of the bacterial property determining the pathogenicity of these microorganisms is their ability to obtain iron. Because in the living environment of these single-celled individuals, its concentration is much lower than this necessary for their growth. For this reason, bacteria created various type of iron aquisition systems, including the Feo system, which mechanism of Fe2+ ion uptake is not fully understood, and protein from the Hmu family belonging to ABC transporters. The Feo transport system is one of the most common systems that is exclusively responsible for importing Fe2+ ions. It consists of three proteins: FeoA, FeoB and FeoC. FeoB is a transmembrane protein that is believed to play a key role in the mechanism of Fe2+ ion uptake. The other two components are cytoplasmic proteins. Both, FeoA and FeoC, are cytoplasmic proteins resembling the construction of transcription regulators. ABC transporters play an equally important role in maintaining iron homeostasis. These include proteins from Hmu family. HmuUV complex catalyses the import of these ions in hem iron form. The structure of this complex consists of TMD dimer (HmuU) and NBD dimer (HmuV). The HmuU is considered to be a permease - just like the FeoB described earlier while HmuV is the ATP binding protein.
Rocznik
Strony
375--394
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
  • Wydział Chemii Uniwersytetu Wrocławskiego, ul. Joliot-Curie 14, 50-383 Wrocław
  • Wydział Chemii Uniwersytetu Wrocławskiego, ul. Joliot-Curie 14, 50-383 Wrocław
Bibliografia
  • [1] K. Siudeja, T. Olczak, Post. Bioch., 2005, 2, 198.
  • [2] A.E. Sestok, R.O.Linkous, A.T. Smith, Metallomics, 2018, 7, 887.
  • [3] M.L. Cartron, S. Maddocks, P. Gillingham, C.J. Craven, S.C. Andrews, Biometals. 2006, 19, 143.
  • [4] B. Stevenson, E.E. Wyckoff, S.M. Payne, J. Bacteriol., 2016, 198, 1160.
  • [5] T.C. Marlovits, W Haase, C. Herrmann, Proc. Natl. Acad. Sci., 2002, 99, 16243.
  • [6] M. Shin, A.R. Mey, S.M. Payne, Proc. Natl. Acad. Sci., 2019, 116, 4599.
  • [7] C.K. Laum, K.D. Krewulak, H.J. Vogel, FEMS Microbiol. Rev., 2016, 40, 273.
  • [8] M. Kammler, C. Schon, K. Hantke, J. Bacteriol., 1993, 175, 6212.
  • [9] J.W. Lee, J.D. Helmann, Biometals, 2007, 20, 485.
  • [10] M.F. Fillat, Arch. Biochem. Biophys., 2014, 546, 41.
  • [11] N.L. Barbieri, J.A. Vande Verde, A.R. Baker, F. Horn, G.Li, C.M. Logue I L.K. Nolan, Front. Cell. Infec. Microbiol. 2017, 7, 1.
  • [12] K.E. Stoll, W.E. Draper, J.I. Kliegman, Biochemistry, 2009, 48, 10308.
  • [13] H. Kim, H. Lee, D. Shin, Biochem. Biophys. Res. Commun., 2012, 423, 4826.
  • [14] D.D. Leipe, Y.I. Wolf, E.V. Koonin, J. Mol. Biol., 2002, 317, 41.
  • [15] J. Velayudhan, N.J. Hughes, A.A. McColm, J. Bagshaw, C.L. Clayton, S.C. Andrews, D.J. Kelly, Mol. Microbiol., 2000, 37, 274.
  • [16] M. Hattori, Y. Jin, H. Nishimasu, Y. Tanaka, M. Mochizuki, T. Uchiumi, R.Ishitani, K. Ito, O. Nureki, Structure, 2009, 17, 1345.
  • [17] S.R.Sprang, Sci. Signal., 2000, 2000, pe1.
  • [18] E.T. Eng, A.R. Jalilian, K.A. Spasov, V.M. Unger, J. Mol. Biol., 2008, 375, 1086.
  • [19] S. Severance, S. Chakraborty, D.J. Kosman, Biochem. J., 2004, 380, 487.
  • [20] S.E. Maddocks, P.C. Oyston, Microbiology, 2008, 154, 3609.
  • [21] K.L. Hsueh, L.K. Yu, Y.H. Chang, J. Bacteriol., 2010, 195, 501.
  • [22] K. W. Hung, J. Y. Tsai, T. H. Juan, Y. L. Hsu, C. D. Hsiao, T. H. Huang, J. Bacteriol., 2012, 194, 6518.
  • [23] H. Kim, H. Lee, D. Shin, J. Bacteriol., 2015, 197, 92.
  • [24] H. Kim, H. Lee, D. Shin, J. Bacteriol., 2013, 195, 3364.
  • [25] P.J. Kiley, H. Beinert, Curr. Opin. Microbiol., 2003, 6, 181.
  • [26] E.L. Mettert, P.J. Kiley, J. Mol. Biol., 2005, 354, 220.
  • [27] A. Maqbool, R.S. Horler, A. Muller, A.J. Wilkinson, K.S. Wilson, G.H. Thomas, Biochem. Soc. Trans., 2015, 43, 1011.
  • [28] K. Wong, J. Ma, A Rothnie, P.C. Biggin, I.D. Kerr, Trends Biochem. Sci., 2014, 39, 8.
  • [29] K.L. Locher, Nat. Struct. Mol. Biol., 2016, 23, 487.
  • [30] K. Hollenstein, R. J.P. Dawson, K.P. Locher, Curr. Opin. Struct. Biol., 2007, 17, 412.
  • [31] X. Liu, Adv. Exp. Med. Biol., 2019, 1141, 13.
  • [32] K. Beis, S. Rebuffat, Res. Microbiol., 2019, 170, 399.
  • [33] V. Braun, K. Hantke, Curr. Opin. Struct. Biol, 2011, 15, 328.
  • [34] W. Köster, Res. Microbiol., 2001, 152, 291.
  • [35] L. Schwiesow, E. Mettert, Y. Wei, H.K. Miller, N.G. Herrera, D. Balderas, P.J. Kiley, V. Auerbuch, Front. Cell. Infect. Microbiol., 2018, 8, 1.
  • [36] J-S. Woo, A. Zeltina, B.A. Goetz, K.P. Locher, Nat. Struct. Mol. Biol., 2012, 19, 1310.
  • [37] N. Noinaj, M. Guillier, T.J. Barnard I S.K. Buchanan, Annu. Rev. Microbiol., 2010, 64, 43.
  • [38] M. Si, Y. Wang, B. Zhang, C. Zhao, Y. Kang, H. Bai, D. Wei, L. Zhu, L. Zhang, T.G. Dong, X. Shen, Cell Reports, 2017, 20, 949.
  • [39] M. Onzuka, Y. Sekine, T. Uchida, K. Ishimori, S.I. Ozaki, Biochim. Biophys. Acta. Gen. Subj., 2017, 1861, 1870.
  • [40] I. Stojiljkovic, K. Hantke, Mol. Microbiol., 1994, 13, 719.
  • [41] O. Lewinson, A.T. Lee, K.P. Locher, D.C. Rees, Nat. Struct. Mol. Biol., 2010, 17, 332.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14aa353d-564a-4f7b-8880-ea1fd2146373
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.