PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modeling of cyclic softening/hardening behavior of carbon steels from low- to high-cycle fatigue regime

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to characterize the stress–strain behavior of three construction steels (SM490, SM570, and F18B) through both experimental and numerical investigations. The material performance was evaluated by conducting tests on round bar specimens subjected to monotonic, fatigue, and incremental step fully reversed loading conditions. The experimental campaign was conducted to provide valuable information on the mechanical performances of the steels and data for calibrating the material constants required for numerical analyses. The numerical simulations aimed to demonstrate the effectiveness of the proposed unconventional plasticity model, the Fatigue SS model (FSS), in describing the non-linear behavior of the materials under a broad range of loading conditions, including stress states below and beyond the macroscopic yield condition. This aspect is a significant advantage of the FSS model, as conventional elastoplastic theories fail to provide a phenomenological description of inelastic material deformation under stress states within the yield condition. The good agreement between the experimental and numerical results confirms the validity of the calibration of the material constants and the reliability of the computational approach.
Rocznik
Strony
art. no. e164, 2023
Opis fizyczny
Bibliogr. 57 poz., rys., wykr.
Twórcy
autor
  • Department of Civil Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
autor
  • Research & Development, Nippon Steel Corporation, 20-1 Shintomi, Futtsu, Chiba 293-8511, Japan
autor
  • Department of Civil Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
Bibliografia
  • 1. Sacconi S, Ierimonti L, Venanzi I, Ubertini F. Life-cycle cost anal- ysis of bridges subjected to fatigue damage. J Infrastruct Preserv and Res. 2021;2:25. https://doi.org/10.1186/s43065-021-00040-3.
  • 2. Lin W, Yoda T. Repair, strengthening, and replacement. In: Bridge Engineering. Elsevier; 2017. p. 245–71. https://doi.org/10.1016/ B978-0-12-804432-2.00014-1.
  • 3. Kang L, Ge H, Kato T. Experimental and ductile fracture model study of single-groove welded joints under monotonic loading. Eng Struct. 2015;85:36–51. https://doi.org/10.1016/j.engstruct. 2014.12.006.
  • 4. Zhang G, Liu Y, Liu J, Lan S, Yang J. Causes and statistical char- acteristics of bridge failures: a review. J Traffic Transp Eng (Eng- lish Edition). 2022;9:388–406. https://doi.org/10.1016/j.jtte.2021. 12.003.
  • 5. Derler C, Unterweger H. Distortion – induced fatigue failure at main girders of a railway bridge – strain measurements in service and analyses based on fracture mechanics. Ce/Papers. 2022;5:42– 51. https://doi.org/10.1002/cepa.1726.
  • 6. Haghani R, Al-Emrani M, Heshmati M. Fatigue-Prone details in steel bridges. Buildings. 2012;2:456–76. https://doi.org/10.3390/ buildings2040456.
  • 7. ATSB-RO-2017–013, Derailment of acid train 9T90, Canberra, 2019. https://www.atsb.gov.au/publications/investigation_repor ts/2017/rair/ro-2017-013 (accessed December 9, 2022).
  • 8. Luo Y, Qiu K, He M, Ma R, Fincato R, Tsutsumi S. Fatigue per- formance of the slit end area of slotted CHS tube-to-gusset plate connection. Thin-Walled Struct. 2022;173:108920. https://doi.org/ 10.1016/j.tws.2022.108920.
  • 9. Saenz-Aguirre A, Ulazia A, Ibarra-Berastegi G, Saenz J. Float- ing wind turbine energy and fatigue loads estimation accord- ing to climate period scaled wind and waves. Energy Convers Manag. 2022;271:116303. https://doi.org/10.1016/j.enconman. 2022.116303.
  • 10. Marin JC, Barroso A, Paris F, Canas J. Fatigue failure in wind turbine blades. In: Alternative energy and shale gas encyclo- pedia. Hoboken, NJ, USA: John Wiley & Sons Inc; 2016. p. 52–68. https://doi.org/10.1002/9781119066354.ch.
  • 11. Biswal R, Mehmanparast A. Fatigue damage analysis of off- shore wind turbine monopile weldments. Procedia Struct Integr. 2019;17:643–50. https://doi.org/10.1016/j.prostr.2019.08.086.
  • 12. Albiez M, Damm J, Ummenhofer T, Ehard H, Schuler C, Kaufmann M, Vallée T, Myslicki S. Hybrid joining of jacket structures for offshore wind turbines – validation under static and dynamic loading at medium and large scale. Eng Struct. 2022;252:113595. https:// doi. org/ 10. 1016/j. engst ruct. 2021. 113595.
  • 13. Dong Y, Garbatov Y, Guedes Soares C. Review on uncertainties in fatigue loads and fatigue life of ships and offshore structures. Ocean Eng. 2022;264:112514. https://doi.org/10.1016/j.oceaneng. 2022.112514.
  • 14. Kong Y, Bennett CJ, Hyde CJ. A review of non-destructive testing techniques for the in-situ investigation of fretting fatigue cracks. Mater Des. 2020;196:109093. https://doi.org/10.1016/j.matdes. 2020.109093.
  • 15. Vanniamparambil PA, Bartoli I, Hazeli K, Cuadra J, Schwartz E, Saralaya R, Kontsos A. An integrated structural health monitoring approach for crack growth monitoring. J Intell Mater Syst Struct. 2012;23:1563–73. https://doi.org/10.1177/1045389X12447987.
  • 16. Abanto-Bueno J, Lambros J. Investigation of crack growth in functionally graded materials using digital image correlation. Eng Fract Mech. 2002;69:1695–711. https://doi.org/10.1016/S0013- 7944(02)00058-9.
  • 17. Melching D, Strohmann T, Requena G, Breitbarth E. Explainable machine learning for precise fatigue crack tip detection. Sci Rep. 2022;12:9513. https://doi.org/10.1038/s41598-022-13275-1.
  • 18. Yang D, Yao L, Pang Q. Simulation of fatigue fracture detection of bridge steel structures under cyclic loads. Comput Intell Neurosci. 2022;2022:1–12. https://doi.org/10.1155/2022/8534824.
  • 19. Fang X, Liu G, Wang H, Xie Y, Tian X, Leng D, Mu W, Ma P, Li G. Fatigue crack growth prediction method based on machine learning model correction. Ocean Eng. 2022;266:112996. https:// doi.org/10.1016/j.oceaneng.2022.112996.
  • 20. Wisner B, Mazur K, Kontsos A. The use of nondestructive evalua- tion methods in fatigue: a review. Fatigue Fract Eng Mater Struct. 2020;43:859–78. https://doi.org/10.1111/ffe.13208.
  • 21. Chadwick DJ, Ghanbari S, Bahr DF, Sangid MD. Crack incuba- tion in shot peened AA7050 and mechanism for fatigue enhance- ment. Fatigue Fract Eng Mater Struct. 2018;41:71–83. https://doi. org/10.1111/ffe.12652.
  • 22. Yeratapally SR, Hochhalter JD, Ruggles TJ, Sangid MD. Investi- gation of fatigue crack incubation and growth in cast MAR-M247 subjected to low cycle fatigue at room temperature. Int J Fract. 2017;208:79–96. https://doi.org/10.1007/s10704-017-0213-3.
  • 23. Morita K, Mouri M, Fincato R, Tsutsumi S. Experimental and numerical study of cyclic stress-strain response and fatigue crack initiation life of mid-carbon steel under constant and multi-step amplitude loading. J Mar Sci Eng. 2022;10:1535. https://doi.org/ 10.3390/jmse10101535.
  • 24. Iida K. Micro-crack initiation life and micro-fractographic analy- sis in strain cycling fatigue of a 60 kg/mm2 high strength steel. J Soc Naval Architects Jpn. 1970;1970:a331–42. https://doi.org/10. 2534/jjasnaoe1968.1970.128_a331.
  • 25. Nieslony A, Dsoki C, Kaufmann H, Krug P. New method for evaluation of the Manson–Coffin–Basquin and Ramberg- Osgood equations with respect to compatibility. Int J Fatigue. 2008;30:1967–77. https://doi.org/10.1016/j.ijfatigue.2008.01.012.
  • 26. Correia JAFO, de Jesus AMP, Fernández-Canteli A. Local unified probabilistic model for fatigue crack initiation and propagation: application to a notched geometry. Eng Struct. 2013;52:394–407. https://doi.org/10.1016/j.engstruct.2013.03.009.
  • 27. Krishnan SA, Sasikala G, Moitra A, Albert SK, Bhaduri AK. A local damage approach to predict crack initiation in type AISI 316L(N) stainless steel. J Mater Eng Perform. 2014;23:1740–9. https://doi.org/10.1007/s11665-014-0907-x.
  • 28. Hayakawa K, Nakamura T, Tanaka S. Analysis of fatigue crack initiation and propagation in cold forging tools by local approach of fracture. Mater Trans. 2004;45:461–8. https://doi.org/10.2320/ matertrans.45.461.
  • 29. Bai S, Sha Y, Zhang J. The effect of compression loading on fatigue crack propagation after a single tensile overload at nega- tive stress ratios. Int J Fatigue. 2018;110:162–71. https://doi.org/ 10.1016/j.ijfatigue.2018.01.011.
  • 30. Gadallah R, Tsutsumi S, Osawa N. Numerical investigation on the influence of tensile overload on fatigue life using the interaction integral method. J Jpn Soc Civil Eng Ser A2 (Appl Mech (AM)). 2018;74:137–46. https://doi.org/10.2208/jscejam.74.I_137.
  • 31. Rice JR. A path independent integral and the approximate analy- sis of strain concentration by notches and cracks. J Appl Mech. 1968;35:379–86. https://doi.org/10.1115/1.3601206.
  • 32. N. Dowling, J. Begley, Fatigue crack growth during gross plas- ticity and the J-integral, in: Mechanics of Crack Growth, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Con- shohocken, PA 19428-2959, n.d.: pp. 82-82–22. https://doi.org/ 10.1520/STP33940S.
  • 33. Tsutsumi S, Fincato R, Luo P, Sano M, Umeda T, Kinosh- ita T, Tagawa T. Effects of weld geometry and HAZ property on low-cycle fatigue behavior of welded joint. Int J Fatigue. 2022;156:106683. https:// doi. org/ 10. 1016/j. ijfat igue. 2021. 106683.
  • 34. Tsutsumi S, Buerlihan A, Fincato R. Numerical study on fatigue notch sensitivity of high and middle strength carbon steels for welded structures. J Jpn Soc Civil Eng Ser A2 (Appl MEch (AM)). 2021;77:145–53. https://doi.org/10.2208/jscejam.77.2_ I_145.
  • 35. Tsutsumi S, Fincato R. Cyclic plasticity model for fatigue with softening behaviour below macroscopic yielding. Mater Des. 2019. https://doi.org/10.1016/j.matdes.2018.107573.
  • 36. Tsutsumi S, Fincato R, Ohata M, Sano T. Assessment technology of fatigue crack initiation life of weld structures, quarterly journal of the Japan welding. Society. 2017;86:56–8. https://doi.org/10. 2207/jjws.86.56.
  • 37. Tsutsumi S, Morita K, Fincato R, Momii H. Fatigue life assess- ment of a non-load carrying fillet joint considering the effects of a cyclic plasticity and weld bead shape. Frattura Ed Integrita Strutturale. 2016. https://doi.org/10.3221/IGF-ESIS.38.33.
  • 38. Konda N, Arimochi K, Fujiwara K, Onishi K, Yamashita M. Development of a new steel plate possessing self-suppression effect for fatigue-crack propagation and properties of welded joints. Weld Int. 2006;20:22–6. https://doi.org/10.1533/wint.2006. 3538.
  • 39. JIS G 3106, Rolled steels for welded structure, in: Japanese stand- ards association (JSA) (Ed.), 2020 Edition, Japanese standards association (JSA) , Tokyo, 2020.
  • 40. JIS G3140, Higher yield strength steel plates for bridges. In: Japa- nese standards association (JSA) (Ed.), 2021 Edition, Japanese standards association (JSA) , Tokyo, 2021.
  • 41. Liu Y, Ikeda S, Liu Y, Kang L, Ge H. Experimental investigation of fracture performances of SBHS500, SM570 and SM490 steel specimens with notches. Metals (Basel). 2022;12:672. https://doi. org/10.3390/met12040672.
  • 42. Khajuria A, Akhtar M, Bedi R. A novel approach to envisage effects of boron in P91 steels through gleeble weld-HAZ simula- tion and impression-creep. J Strain Anal Eng Des. 2022;57:647– 63. https://doi.org/10.1177/03093247211061943.
  • 43. Khajuria A, Akhtar M, Bedi R. Boron addition to AISI A213/P91 steel: preliminary investigation on microstructural evolution and microhardness at simulated heat-affected zone. Materwiss Werkst- tech. 2022;53:1167–83. https://doi.org/10.1002/mawe.202100152.
  • 44. Akhtar M, Khajuria A, Sahu JK, Swaminathan J, Kumar R, Bedi R, Albert SK. Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications. Appl Nanosci. 2018;8:1669–85. https://doi.org/10. 1007/s13204-018-0854-1.
  • 45. K. Hashiguchi, Foundations of elastoplasticity: subloading surface model, 2017. https://doi.org/10.1007/978-3-319-48821-9.
  • 46. Alfredsson B, Olsson E. Multi-axial fatigue initiation at inclusions and subsequent crack growth in a bainitic high strength roller bearing steel at uniaxial experiments. Int J Fatigue. 2012;41:130– 9. https://doi.org/10.1016/j.ijfatigue.2011.11.006.
  • 47. Cerullo M, Tvergaard V. Micromechanical study of the effect of inclusions on fatigue failure in a roller bearing. Int J Struct Integr. 2015;6:124–41. https://doi.org/10.1108/IJSI-04-2014-0020.
  • 48. Sakai T, Nakagawa A, Oguma N, Nakamura Y, Ueno A, Kikuchi S, Sakaida A. A review on fatigue fracture modes of structural metallic materials in very high cycle regime. Int J Fatigue. 2016;93:339–51. https://doi.org/10.1016/j.ijfatigue.2016.05.029.
  • 49. Jiang L, Brooks CR, Liaw PK, Wang H, Rawn CJ, Klarstrom DL. High-frequency metal fatigue: the high-cycle fatigue behavior of ULTIMET® alloy. Mater Sci Eng, A. 2001;314:162–75. https:// doi.org/10.1016/S0921-5093(00)01928-6.
  • 50. Toyosada M, Gotoh K, Niwa T. Fatigue crack propagation for a through thickness crack: a crack propagation law considering cyclic plasticity near the crack tip. Int J Fatigue. 2004;26:983–92. https://doi.org/10.1016/j.ijfatigue.2003.12.006.
  • 51. Fincato R, Tsutsumi S, Sakai T, Terada K. 3D crystal plasticity analyses on the role of hard/soft inclusions in the local slip forma- tion. Int J Fatigue. 2020;134:105518. https://doi.org/10.1016/j. ijfatigue.2020.105518.
  • 52. Paul SK, Sivaprasad S, Dhar S, Tarafder S. Key issues in cyclic plastic deformation: experimentation. Mech Mater. 2011;43:705– 20. https://doi.org/10.1016/j.mechmat.2011.07.011.
  • 53. Song K, Wang K, Zhao L, Xu L, Han Y, Hao K. A combined elastic–plastic framework unifying the various cyclic softening/ hardening behaviors for heat resistant steels: Experiment and modeling. Int J Fatigue. 2022;158:106736. https:// doi. org/ 10. 1016/j.ijfatigue.2022.106736.
  • 54. Xu L-Y, Fan J-S, Yang Y, Tao M-X, Tang Z-Y. An improved elasto-plastic constitutive model for the exquisite description of stress-strain hysteresis loops with cyclic hardening and softening effects. Mech Mater. 2020;150:103590. https://doi.org/10.1016/j. mechmat.2020.103590.
  • 55. Wang C, Xu L, Fan J. Cyclic softening behavior of struc- tural steel with strain range dependence. J Constr Steel Res. 2021;181:106658. https://doi.org/10.1016/j.jcsr.2021.106658.
  • 56. Tsutsumi S, Toyosada M, Hashiguchi K. Extended subloading sur- face model incorporating elastic boundary concept. J Appl Mech. 2006;9:455–62. https://doi.org/10.2208/journalam.9.455.
  • 57. Wang Y, Fincato R, Morita K, Wang Q, Tsutsumi S. Cyclic elas- toplasticity-based life assessment of fatigue crack initiation and subsequent propagation in rib-to-deck welded joints. Int J Fatigue. 2023. https://doi.org/10.1016/j.ijfatigue.2023.107679.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14a91b36-ed6f-4de0-b0c0-2371475c827a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.