Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider a parametric Dirichlet problem driven by the anisotropic (p, q)-Laplacian and a reaction with a singular term and a superdiffusive logistic perturbation. We prove an existence and nonexistence theorem which is global with respect to the parameter λ > 0.
Czasopismo
Rocznik
Tom
Strony
765--783
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
- Universidade Federal do Pará, Departamento de Matemática, 66075-110, Belém, PA, Brazil
autor
- Department of Mathematics and Computer Sciences, Physical Sciences and Earth Sciences (MIFT), University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166, Messina, Italy
autor
- University of the National Education Commission, Department of Mathematics, Podchorazych 2, 30-084 Cracow, Poland
autor
- National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
- Center for Applied Mathematics, Yulin Normal University, Yulin 537000, P.R. China
- University of Craiova, Department of Mathematics, 200585 Craiova, Romania
Bibliografia
- [1] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011.
- [2] X.L. Fan, Global C1,α regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007), 397–417.
- [3] X.L. Fan, Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843–1852.
- [4] M.E. Filippakis, N.S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations 245 (2008), 1883–1922.
- [5] S. Hu, N.S. Papageorgiou, Research Topics in Analysis, Vol. II. Applications, Birkhäuser/Springer, Cham, 2024.
- [6] G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311–361.
- [7] N.S. Papageorgiou, P. Winkert, Existence and nonexistence of positive solutions for singular (p, q)-equations with superdiffusive perturbation, Results Math. 76 (2021), Paper no. 169.
- [8] N.S. Papageorgiou, P. Winkert, Positive solutions for singular anisotropic (p, q)-equations, J. Geom. Anal. 31 (2021), 11849–11877.
- [9] N.S. Papageorgiou, P. Winkert, Applied Nonlinear Functional Analysis, De Gruyter, Berlin, 2024.
- [10] N.S. Papageorgiou, V. Rădulescu, X. Tang, Anisotropic Robin problems with logistic reaction, Z. Angew. Math. Phys. 72 (2021), Paper no. 94.
- [11] N.S. Papageorgiou, V. Rădulescu, Y. Zhang, Anisotropic singular double phase Dirichlet problems, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), 4465–4502.
- [12] Q. Zhang, A strong maximum principle for differential equations with nonstandard p(x)-growth conditions, J. Math. Anal. Appl. 312 (2005), 24–32.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14a80466-0301-45b7-8d9a-0c96ec94cf51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.