Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Biotesty ekotoksykologiczne jako narzędzie do ciągłego monitoringu jakości wody w zbiornikach zaporowych
Języki publikacji
Abstrakty
Ecotoxicological biotests were applied in order to evaluate their suitability as early warning systems in the continuous monitoring of lowland shallow dam reservoirs located in Central Europe. The following biotests were used: Daphtoxkit F™magna, Algaltoxkit F™, Ostracodtoxkit F, Phytotoxkit and MARA Test. The experiment was conducted from July 2010 to December 2012 in Goczalkowice Reservoir (the Vistula River, Poland), serving as a model. For the analysis, 41 out of 52 measured water indices were used to assess its toxicity to living organisms. The results of biotests were correlated with 41 hydrochemical indices of water quality. The pattern of relationships among the result of biotest and hydrochemical indices as well as Factor Analysis (FA) and Primary Component Analysis (PCA) revealed that: i) signs of ecotoxicity detected with biotests were associated with either low flow periods or spring surface runoff of water; ii) single events of increased ecotoxicity in the depression areas behind saddle dam pump stations appeared after high flow periods; iii) elevated toxicity was accompanied by high concentrations of dissolved and suspended substances; iv) FA and PCA demonstrated correlations among the results of biotests and damming parameters, water conductivity, alkali and transitory metal metals (Ca, Fe, Cu, Zn), and several forms of nitrogen phosphorous and carbon compounds concentration. The relationships suggest that batteries of biotests may serve as a cost-eff ective tool for continuous monitoring of water quality in dam reservoirs and can detect effects of extreme hydrologic events, local toxic discharges, and signs of the trophic status of the reservoirs.
Celem pracy była analiza zastosowania biotestów ekotoksykologicznych do oceny ich przydatności jako systemów wczesnego ostrzegania w ciągłym monitoringu nizinnych, płytkich zbiorników zaporowych zlokalizowanych w Europie Środkowej. Zastosowano następujące biotesty: Daphtoxkit F™magna, Algaltoxkit F™, Ostracodtoxkit F, Phytotoxkit i MARA Test. Badania prowadzono od lipca 2010 do grudnia 2012 roku na Zbiorniku Goczałkowickim (Wisła, Polska), który pełnił funkcję modelu badawczego. Do analizy wykorzystano 41 z 52 zmierzonych wskaźników wody celem oceny jej toksyczności na organizmy żywe. Wyniki biotestów skorelowano z 41 hydrochemicznymi wskaźnikami jakości wody. Schemat zależności między wynikiem biotestów i wartościami wskaźników hydrochemicznych oraz wyniki analizy czynnikowej (FA) i analizy składowych pierwszorzędowych (PCA) wykazały, że: iii) oznaki ekotoksyczności wykryte za pomocą biotestów były związane albo z okresami niskiego przepływu, albo z wiosennym spływem wód powierzchniowych; iii) po okresach wzmożonych przepływów wystąpiły pojedyncze przypadki zwiększonej ekotoksyczności w obszarze obniżenia tamy bocznej za przepompowniami zapory; iii) podwyższonej toksyczności towarzyszyły wysokie stężenia substancji rozpuszczonych i zawieszonych; iv) FA i PCA wykazały korelacje między wynikami biotestów i parametrami piętrzenia, przewodnością wody, metalami alkalicznymi i przejściowymi (Ca, Fe, Cu, Zn) oraz kilkoma grupami związków azotu, fosforu i węgla. Uzyskane wyniki analizy sugerują, że baterie biotestów mogą służyć, jako efektywne, nisko kosztowe narzędzie do ciągłego monitorowania jakości wody w zbiornikach zaporowych i mogą wykrywać negatywne skutki ekstremalnych zdarzeń hydrologicznych, lokalnych zrzutów zanieczyszczeń oraz zmian stanu troficznego zbiorników. Wyniki sugerują, że biotesty mogą pomóc w ciągłym monitorowaniu poziomu troficznego zbiorników zaporowych
Czasopismo
Rocznik
Tom
Strony
25--38
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
- Retired university professor, University of Silesia in Katowice, Poland
autor
- University of Silesia in Katowice, Poland
autor
- Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Bibliografia
- 1. Baran, A. & Tarnawski, M. (2013). Phytotoxkit/Phytotestkit and Microtox® as tools for toxicity assessment of sediments. Ecotoxicology and Environmental Safety, 98, pp. 19–27.
- 2. Baudo, R., Sbalchiero, A. & Beltrami, M. (2004). Test di Tossicita acuta con Daphnia magna (Acute toxicity test with Daphnia magna). Biologi Italiani, 6, pp. 62–69.
- 3. Blaise, C., Gagné. F., Chèvre, N., Harwood, M., Lee, K., Lappalainen, J., Chial, B., Persoone, G. & Doe, K. (2004). Toxicity assessment of oil-contaminated freshwater sediments. Environmental Toxicology, 19, 4, pp. 267–273.
- 4. Blaise, C. & Férard, J-F. (2006). Microbiotests in aquatic toxicology: the way forward. [in:] Environmental Toxicology, Kungolos, A., Brebbia, C.A., Samaras, C.P. & Popov, V. (Eds.). UK WIT Press, Southampton, pp. 339–348.
- 5. Calabrese, E.J. (2004). Hormesis: A revolution in toxicology, risk assessment and medicine. EMBO Reports, 5, Suppl 1, pp. S37–S40.
- 6. CAS Registry. (2022). CAS REGISTRY®. A division of the American Chemical Society. (https://www.cas.org/cas-data/cas-registry (14.07.2022))
- 7. Chial, B.Z., Persoone, G. & Blaise, C. (2003). Cyst-based toxicity tests. XVIII. Application of ostracodtoxkit microbiotest in a bioremediation project of oil-contaminated sediments: sensitivity comparison with Hyalella azteca solid-phase assay. Environmental Toxicology, 18, 5, pp. 279–283.
- 8. Cloete, Y.C., Shaddock, B.F. & Nel, A. (2017). The use of two microbiotests to evaluate the toxicity of sediment from Mpumalanga, South Africa. Water SA, 43, pp. 409–412. DOI:10.4314/wsa.v43i3.05
- 9. Czerniawska-Kusza, I., Ciesielczuk, T., Kusza, G. & Cichoń, A. (2006). Comparison of the Phytotoxkit Microbiotest and chemical variables for toxicity evaluation of sediments. Environmental Toxicology, 21, pp. 367–372.
- 10. Daniel, M., Sharpe, A., Driver, J., Knight, A.W., Keenan, P.O., Walmsley, R.M., Robinson, A., Zhang, T. & Rawson, D. (2004). Results of a technology demonstration project to compare rapid aquatic toxicity screening tests in the analysis of industrial effluents. Journal of Environmental Monitoring, 6, pp. 855–865.
- 11. EU Water Framework Directive. (2000). Directive 2000/60/EC of the European Parliament and of the Council of October 23, 2000 establishing a framework for Community action in the field of water policy. Official Journal L, 327, 22/12/2000, pp. 1–73.
- 12. Fai, P.B. & Grant, A. (2010). An assessment of the potential of the microbial assay for risk assessment (MARA) for ecotoxicological testing. Ecotoxicology, 19, 8, pp. 1626–1633.
- 13. Gabrielson, J., Kühn, I., Colque-Navarro, P., Hart, M., Iversen, A., Mckenzie, D. & Möllby, R. (2003). Microplate-based microbial assay for risk assessment and (eco)toxic fingerprinting of chemicals. Analytica Chimica Acta, 485, pp. 121–130.
- 14. Gagne, F. & Blaise, C. (2005). Review of biomarkers and new techniques for in situ aquatic studies with bivalves, [in:] Environmental Toxicity Testing, Thompson, K.C., Wadhia, K. & Loibner, A.P. (Eds.). Blackwell Publishing Ltd., Oxford, pp. 206–228.
- 15. Goczalkowice Resorvoir. (2022). The Goczałkowicki reservoir (the so-called Goczałkowickie Lake). (http://web.archive.org/web/20140828020743/http://www.gocz.pl:80/content/view/63/39 (14.07.2022)). (in Polish)
- 16. Górecki, T. & Heba El-Hussieny, M. (2010). Total Parameters as a Tool for the Evaluation of the Load of Xenobiotics in the Environment. [in:] Analytical Measurements in Aquatic Environment, Namiesnik, J. & Szefer, P. (Eds.). CRC Press, Taylor & Francis Group, Boca Raton, pp. 223–241.
- 17. Heisterkamp, I., Ratte, M., Schoknecht, U., Gartiser, S., Kalbe, U. & Ilvonen O. (2021). Ecotoxicological evaluation of construction products: inter‑laboratory test with DSLT and percolation test eluates in an aquatic biotest battery. Environmental Science Europe, 33, pp. 1–14. DOI:10.1186/s12302-021-00514-x
- 18. Jabłońska-Czapla, M., Kowalski, E. & Mazierski, J. (2013). The role of point and non-point water pollution in metal deposits dispersion in Goczalkowice water reservoir, [in:] Current issues in water treatment and distribution, Zimoch, I. & Sawiniak, W. (Eds.). Institute of Water and Wastewater Engineering, Silesian University of Technology, Gliwice, pp. 47–57. (in Polish)
- 19. Journal of Laws. (2009). Regulation of the Minister of the Environment of May 13 2009 on the forms and methods of monitoring surface and groundwater bodies, Journal of Laws of the Republic of Poland 2009 No. 81, item 685, (https://dziennikustaw.gov.pl/DU/2009/s/81/685 (14.07.2022)). (in Polish)
- 20. Journal of Laws. (2011). Regulation of the Minister of the Environment of November 15, 2011 on the forms and methods of monitoring surface and groundwater bodies, Journal of Laws of the Republic of Poland 2011 No. 258, item 1550, (https://dziennikustaw.gov.pl/DU/2011/s/258/1550 (14.07.2022)). (in Polish)
- 21. Kahru, A., Põllumaa, L., Reiman, R. & Rätsep, A. (1999). Predicting the toxicity of oil-shale industry wastewater by its phenolic composition. Alternatives to Laboratory Animals, 27, pp. 359–366.
- 22. Kielka, E., Siedlecka, A., Wolf, M., Stróżak, S., Piekarska, K. & Strub, D. (2018). Ecotoxicity assessment of camphor oxime using Microtox assay – preliminary research. E3S Web of Conferences 44, 00066. DOI:10.1051/e3sconf/20184400066
- 23. Kostecki, M., Kernert, J., Nocoń, W. & Janta-Koszuta, K. (2013). Seasonal and spatial variability of selected hydrochemical indices in Goczalkowice Reservoir. [in:] Current issues in water treatment and distribution, Zimoch, I. & Sawiniak, W. (Eds.). Institute of Water and Wastewater Engineering, Silesian University of Technology, Gliwice, pp. 93–103. (in Polish)
- 24. Latif, M. & Licek, E. (2004). Toxicity assessment of wastewaters, river waters, and sediments in Austria using cost-effective microbiotests. Environmental Toxicology, 19, 4, 302–309.
- 25. Lucivjanska, V., Lucivjanska, M. & Cizek, V. (2000). Sensitivity comparison of the ISO Daphnia and algal test procedures with Toxkit microbiotests. [in:] New Microbiotests for Routine Toxicity Screening and Biomonitoring, Persoone, G., Janssen, C. & De Coen, W. (Eds.). Kluwer Academic/Plenum Publishers, New York, pp. 243–246.
- 26. Mankiewicz-Boczek, J., Nałęcz-Jawecki, G., Drobniewska, A., Kaza, M., Sumorok, B., Izydorczyk. K.M., Zalewski, M. & Sawicki, J. (2008). Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicology and Environmental Safety, 71, 3, pp. 830–836.
- 27. Manusadzianas, L., Balkelyte, L., Sadauskas, K., Blinova, I., Põllumaa, L. & Kahru, A. (2003). Ecotoxicological study of Lithuanian and Estonian wastewaters: selection of the biotests and correspondence between toxicity and chemical-based indices. Aquatic Toxicology, 63, 1, pp. 27–41.
- 28. Maradona, A., Marshall, G., Mehrvar, M., Pushchak, R., Laursen, A.E., Mccarthy, L.H., Bostan, V. & Gilbride, K.A. (2012). Utilisation of multiple organisms in a proposed early-warning biomonitoring system for real-time detection of contaminants: preliminary results and modeling. Journal of Hazardous Materials, 219–220, pp. 95–102.
- 29. Moser, H., Angrick, M. & Römbke, J. (2009). Ecotoxicological Characterisation of Waste: Results and Experiences of an International Ring Test, Springer, Stuttgart, 2009.
- 30. Nałęcz-Jawecki, G., Wadhia, K., Adomas, B., Piotrowicz-Cielak, A.I. & Sawicki, J. (2010). Application of microbial assay for risk assessment biotest in evaluation of toxicity of human and veterinary antibiotics. Environmental Toxicology, 25, 5, pp. 487–494.
- 31. Nature 2000 Area. (2022). Central Register of Forms of Nature Protection. GDOŚ, (https://crfop.gdos.gov.pl/CRFOP/widok/viewnatura2000.jsf?fop=PL.ZIPOP.1393.N2K.PLB240001.B (14.07.2022)). (in Polish)
- 32. Olkova, A. & Berezin, G. (2021). Battery of bioassays" for diagnostics of toxicity of natural water when pollution with aluminum compounds. Journal of Ecological Engineering, 22, 2, pp.195–199. DOI:10.12911/22998993/131029
- 33. Palma, P., Alvarenga, P., Palma, V., Matos, C., Fernandes, R.M., Soares, A. & Barbosa, I.R. (2010). Evaluation of surface water quality using an ecotoxicological approach: a case study of the Alqueva Reservoir (Portugal). Environmental Science and Pollution Research, 17, 3, pp. 703–716. DOI: 10.1007/s11356-009-0143-3.
- 34. Pejman, A.H., Nabi Bidhendi, G.R., Karbassi, A.R., Mehrdadi, N. & Esmaeili Bidhendi, M. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International Journal of Environmental Science and Technology, 6, 3, pp. 467–476.
- 35. Persoone, G., Baudo, R., Cotman, M., Blaise, C., Thompson, K.C., Moreira-Santos, M., Vollat, B., Törökne, A. & Han, T. (2009). Review on the acute Daphnia magna toxicity test – Evaluation of the sensitivity and the precision of assays performed with organisms from laboratory cultures or hatched from dormant eggs. Knowledge and Management of Aquatic Ecosystems, 393, pp. 1–29.
- 36. Persoone, G., Marsalek, B., Blinova, I., Törökne, A., Zarina, D., Manusadzianas, L., Nalecz-Jawecki, G., Tofan, L., Stepanova, N., Tothova, L. & Kolar, B. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental Toxicology, 18, pp. 395–402.
- 37. Szara-Bąk, M., Baran, A., Klimkowicz-Pawlas, A., Tkaczewska, J. & Wojtasik, B. (2021). Mobility, ecotoxicity, bioaccumulation and sources of trace elements in the bottom sediments of the Rożnów reservoir. Environmental Geochemistry Health, 43, pp. 4701–4718. DOI:10.1007/s10653-021-00957-4
- 38. Szklarek, S., Stolarska, M., Wagner, I. & Mankiewicz-Boczek, J. (2015). The microbiotest battery as an important component in the assessment of snowmelt toxicity in urban watercourses – preliminary studies. Environmental Monitoring Assessment, 187, 16, pp. 1–12. DOI:10.1007/s10661-014-4252-1
- 39. Szklarek, S., Kiedrzyńska, E., Kiedrzyński, M., Mankiewicz-Boczek, J., Mitsch, W.J. & Zalewski, M. (2021). Comparing ecotoxicological and physicochemical indicators of municipal wastewater effluent and river water quality in a Baltic Sea catchment in Poland. Ecological Indicators, 126, pp. 1–12. DOI:10.1016/j.ecolind.2021.107611
- 40. Törökne, A. & Toro, K. (2010). Evaluation of the toxicity of river and creek sediments in Hungary with two different methods. Environmental Toxicology, 25, 5, pp. 504–509.
- 41. Vandenbroele, M.C., Heijerick, D.G., Vangheluwe, M.L. & Janssen. CR (2000). Comparison of the conventional algal assay and the Algaltoxkit F microbiotest for toxicity evaluation of sediment pore waters. [in:] New Microbiotests for Routine Toxicity Screening and Biomonitoring, Persoone, G., Janssen, C. &, De Coen W. (Eds.). Kluwer Academic/Plenum Publishers, New York, pp. 261–268.
- 42. Vliet Van der, L., Velicogna, J., Princz, J. & Scroggins, R. (2012). Phytotoxkit: a critical look at a rapid assessment tool. Environmental Toxicology and Chemistry, 31, 2, pp. 316–323.
- 43. Wadhia, K. & Thompson, K.C. (2007). Low-cost ecotoxicity testing of environmental samples using microbiotests for potential implementation of the Water Framework Directive. Trends in Analytical Chemistry, 26, 4, pp. 300–307.
- 44. Wadhia, K. & Dando, T.R. (2009). Environmental toxicity testing using the Microbial Assay for Risk Assessment (MARA). Fresenius Environmental Bulletin, 18, 2, pp. 213–218.
- 45. Wielen Van der, C. & Halleux, I. (2000). Shifting from the conventional ISO 8692 algal growth inhibition test to the Algaltoxkit F microbiotest. [in:] New Microbiotests for Routine Toxicity Screening and Biomonitoring, Persoone, G., Janssen, C. & De Coen, W. (Eds.). Kluwer Academic/Plenum Publishers, New York, pp. 269–272. DOI: 10.1007/978-1-4615-4289-6_44.
- 46. Wolska, L., Kochanowska, A. & Namiesnik, J. (2010). Application of Biotests – chapter 9. [in:] Analytical Measurements in Aquatic Environment, Namiesnik, J. & Szefer, P. (Eds.). CRC Press, Taylor & Francis Group, Boca Raton, pp. 189–223.
- 47. Zgórska, A., Bondaruk, J., Dudziak, M. & Hamerla, A. (2020). Impact of industrial discharge on aquatic ecosystems of the Kłodnica River with reference to Water Framework Directive objectives. Polish Journal of Environmental Studies, 29, 4, pp. 2945–2953. DOI:10.15244/pjoes/112931
- 48. Zhengjun, W. & Huili, G. (2010). Evaluating the effectiveness of routine water quality monitoring in Miyun reservoir based on geostatistical analysis. Environmental Monitoring and Assessment, 160, pp. 465–478. DOI: 10.1007/s10661-008-0711—x.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14a6cb4d-7506-4f55-b4d4-8e7de93f701c