Identyfikatory
Warianty tytułu
Rola CO2 w ekosystemie ziemi i możliwości sterowania przepływami CO2 pomiędzy podsystemami
Języki publikacji
Abstrakty
This article describes CO2 flows in the Earth’s ecosystem. It also describes how CO2 is made use of in various market sectors – as a raw material in the synthesis of plastics and fuels, during extraction in the food and perfume industries, for the transfer of heat in heating and refrigeration systems, and in the breeding of genetically modified algae for the production of biofuels. Additionally, the article explores the possibility of reducing atmospheric CO2 concentrations and the anthropogenic modification of natural flows between the various subsystems in the Earth’s ecosystem.
W artykule scharakteryzowano przepływy CO2 w ekosystemie Ziemi. Omówiono zastosowania CO2 w różnych sektorach gospodarki: jako surowca do syntezy tworzyw i paliw, do ekstrakcji w przemyśle spożywczym i perfumeryjnym, do przenoszenia ciepła i chłodu w ciepłownictwie i chłodnictwie oraz do hodowli genetycznie zmodyfikowanych alg służących do produkcji biopaliw. Wskazano także na możliwości redukcji stężenia CO2 w atmosferze poprzez antropogeniczną modyfikację naturalnych przepływów pomiędzy podsystemami w ekosystemie Ziemi.
Wydawca
Czasopismo
Rocznik
Tom
Strony
5--19
Opis fizyczny
Bibliogr. 82 poz.
Twórcy
autor
- Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
autor
- School of Environmental and Resources Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
Bibliografia
- [1] Andreiadis et al. 2011 – Andreiadis, E.S., Chavarot-Kerlidou, M., Fontecave, M. and Artero, V. 2011. Artificial Photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells, Photochemistry and photobiology 87 (5), 946–964.
- [2] Assamann et al. 2010 – Assamann, K.M., Bentsen, M., Segschneider, J. and Heinze, C. 2010. An isopycnic ocean carbon cycle model. Geosci. Model Dev. 3, 143–167.
- [3] Aumont, O. and Boop, L. 2006. Globalizing results from ocean in situ iron fertilization studies. Global Biogeochem. Cycles 20, GB2017.
- [4] Beer, C. et al. 2010. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329, 834–838.
- [5] Bilanovic et al. – Bilanovic, D., Andargatchew, A., Kroeger, T. and Shelef, G. 2009. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – Response surface methodology analysis. Energy Conversion and Management vol. 50, no 2, 262–267.
- [6] Blain, S., et al. 2007. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean, Nature 446, 1070–1074.
- [7] Boyd, P.W., et al. 2007. Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions, Science 315, 612–617.
- [8] Bridgham et al. 2006 – Bridgham, S.D., Megonigal, J.P., Keller, J.K., Bliss, N.B. and Trettin, C. 2006. The carbon balance of North American wetlands, Wetlands 26, 889–916.
- [9] Buesseler et al. 2004 – Buesseler, K.O., Andrews, J.E., Pike, S.M. and Charette, M.A. 2004. The effects of iron fertilization on carbon sequestration in the Southern Ocean, Science 304, 414–417.
- [10] Canadell, J.G. and Raupach, M.R. 2008. Managing Forests for Climate Mitigation, Science 320, 1456–1457.
- [11] Dajas, M. and Henczka, M. 2012. Reaktywna ekstrakcja kwasów karboksylowych z zastosowaniem dwutlenku węgla w stanie nadkrytycznym (The reactive extraction of carboxylic acid using carbon dioxide in its supercritical state). Inż. Ap. Chem. 51, 6, 310–311.
- [12] Darensbourg, D.J. 2007. Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from expoxides and CO2. Chemical Reviews 107(6), 2388–2410.
- [13] Dasgupta, P. 2013. Land access and food security for forest dwellers: an economic analysis for India. Problems of Sustainable Development/Problemy Ekorozwoju 8, 27–37.
- [14] Denman, K.L. et al. 2007. Couplings between changes in the climate system and biogeochemistry [In:] Climate change 2007: The physical science basis. Contribution of working group I to the Fourth Assessment Report of the intergovernmental panel on climate change [Solomon, S.D.,Manning, Qin,M., Chen, Z.,Marquis,M., Averyt, K.B., Tignor, M. and Miller, H.L. (eds.)] Cambridge University Press, Cambridge, United Kingdom and New York, NY USA, 499–587.
- [15] Dodge, E. 2014. CO2-based plastic and polymers attract powerful investors, Breaking Energy, http://breakingenergy.com/2014/01/30.
- [16] Doney, S.C. et al. 2009. Mechanisms governing interannual variability in upper ocean inorganic carbon system and air-sea CO2 fluxes: Physical climate and atmospheric dust. Deep-Sea Res. Pt. II 56, 640–655.
- [17] Duran et al. 2013 – Duran, J., Golusin, M., Ivanovic, O.M., Javanovic, L. and Andrejevic, A. 2013. Renewable energy and socio-economic development in the European Union, Problems of Sustainable Development/Problemy Ekorozwoju 8(1), 105–114.
- [18] Ecimovic et al. 2014 – Ecimovic, T., Haw, R., Kondrashin, I., Raoul, W. and Vivanco, G.F. 2014. Problems of Sustainable Development/Problemy Ekorozwoju 9(2), 7–25.
- [19] Francey, R.J., et al. 2013, Atmospheric verification of anthropogenic CO2 emission trends. Nature Climate Change 3, 520–524.
- [20] Graven et al. 2012 – Graven, H.D., Gruber, N., Key, R., Khatiwala, S. and Giraud, X. 2012. Changing controls on oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. J. Geophys. Res. Oceans 117, 2005–2012.
- [21] Greenemeier, L. 2009. How to make plastic with less petroleum – just add CO2. Scientific American 12.
- [22] Gregory et al. 2011 – Gregory, K.B., Vidic, R. and Dzombak, D.A. 2011.Watermanagement challenges associated with the production of shale gas by hydraulic fracturing. 7 (3), 181–186.
- [23] Gruber et al. 2012 – Gruber, N., Hauri, C., Lachkar, Z., Frolicher, T.L. and Plattner, G.K. 2012. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223.
- [24] Grunwald, A. 2014. Sustainability research as inter and trans-disciplinary activity: the case of German “energiewende”. Problems of Sustainable Development/Problemy Ekorozwoju 9(1), 11–20.
- [25] Gurgenova, K. and Wawrzyniak, P. 2012. Batch high-pressure supercritical fluid extraction of essential oil from black cumin seeds. Inż. Ap. Chem. 51, 6, 322–323.
- [26] Hansell et al. 2009 – Hansell, D.A., Carlson, C.A., Repeta, D.J. and Schlitzer, R. 2009. Dissolved organic matter in the ocean: A controversy stimulates new insights. Oceanography 22, 202–211.
- [27] Houghton, R.A. et al. 2012. carbon emissions from land use and land-cover change, Biogeosciences 9, 5125–5142.
- [28] House et al. 2002 – House, J. I., Prentice, I.C. and Le Quere, C. 2002. Maximum impacts of future reforestation or deforestation on atmospheric CO2. Global Change Biol. 8, 1047–1052.
- [29] Jin, X. and Gruber, N. 2003. Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions. Geophys. Res. Let. 30, 24, 2249.
- [30] Joos F. et al. 2013. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825.
- [31] IPCC 2013 – IPCC Assessment Report, Chapter 6 Carbon and other Biochemical Cycles.
- [32] IPCC 2007 – IPCC Assessment Report, Chapter 2, Observations: Atmosphere and Surface.
- [33] IPCC 2014 – Fourth Report.
- [34] Janiszewska, E. and Witrowa-Rajchert, D. 2005. Ekstrakcja nadkrytyczna w przemyśle spożywczym (Supercritical extraction in the food industry). Żywność. Nauka. Technologia. Jakość 4(45), 5–16.
- [35] Kalyanasundaram, K. and Gratzel, M. 2010. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage. Current Opinion in Biotechnology 21(3), 298–310.
- [36] Kelemen, P.B. and Matter, J. 2008. In situ carbonation of peridotite for CO2 storage. Proc. Natl. Acad. Sci. U.S.A. 105, 17295–17300.
- [37] Khatiwala et al. 2009 – Khatiwala, S., Primeau, F. and Hall, T. 2009. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462, 346–349.
- [38] Konarski W., 2014: Mineral energy sources and political activities: introduction to mutual dependencies and their selected exemplification. Problems of Sustainable Development/Problemy Ekorozwoju 9(1), 63–70.
- [39] Kostecka, J. 2013. Self-evaluation on the Way to Retardation of Pace Life and Resources Transformations, Problems of Sustainable Development/Problemy Ekorozwoju 8(2), 93–102.
- [40] Kumar et al. 2011 – Kumar, K., Gasgupta, C.N., Nayak, B., Lindblad, P. and Das, D. 2011. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology 102, 4945–4953.
- [41] Le Quere et al., 2013. The global carbon budget 1959–2011. Earth Syst. Sci. Data 5, 165–168.
- [42] Lindzen, R.S., 2010. Global warming: the origin and nature of the alleged scientific consensus. Problems of Sustainable Development/Problemy Ekorozwoju 5, 13–28.
- [43] Listori et al. 2009 – Listori, A., Durrant, J. and Barber, J. 2009. Solar to fuel. Nature Materials 8 (12), 929–930.
- [44] Logan et al. 2012 – Logan, J., Heath, G., Macknick, J., Paranhos, E., Boyd, W. and Carlson, K. 2012. Natural gas and the transformation of the U.S. energy sector. Technical Report NREL/TP-6A50-55538.
- [45] Lovelock, J.E. and Rapley, C.G. 2007. Ocean pipes could help the Earth to cure itself. Nature 449, 403–403.
- [46] Mauro et al. 2011 – Mauro, C., Sartorel, A., Toma, F., Puntorieri, F., Scandola, F., Campagna, S., Prato, M. and Bonchio, M. 2011. Artificial Photosynthesis Challenges: Water Oxidation at Nanostructured interfaces. Topics in Current Chemistry 303, 121–150.
- [47] Mason Earles et al. 2012 – Mason Earles, J., Yeh, S. and Skog, K.E. 2012. Timing of carbon emissions from global forest clearance, Clim. Change 2, 682–685.
- [48] Mikaloff-Fletcher, S.E. et al. 2006. Inverse estimates of anthropogenic CO2 uptake transport and storage by the ocean. Global Biogeochem. Cycles 20, 2002–2015.
- [49] O’Byrne et al. 2013 – O’Byrne, J.P., Owen, R.E., Minett, D.R., Pascu, S.I., Pluciński, P.K., Jones, M.D. and Mattia, D. 2013. High CO2 and CO conversion to hydrocarbons using bridged Fe nanoparticles on carbon nanotubes. Catalysis Science & Technology 3, No 5, 1202–1207.
- [50] Pawłowska et al. 2003 – Pawłowska, M., Stępniewski, W. and Czerwiński, J. 2003. The Effect of Texture on Methane Oxidation Capacity on Sand Layer – a Model Laboratory Study, Enviromental Engineering Studies. Polish Research on the Way to EU, ed.: Pawłowski, L., Dudzińska, M., Pawłowski, A. Kluwer Academic/Plenum Publishers, New York, pp. 339–354.
- [51] Pawłowska, M., and Stępniewski, W. 2004. The effect of oxygen concentration on the activity of methanotrophs in sand material. Environment Protection Engineering Vol. 30, No. 3, 81–91.
- [52] Pawłowska, M., and Stępniewski, W. 2006. Biochemical reduction of methane emission from landfills. Environmental Engineering Science Vol. 23, No 4, 666–672.
- [53] Pawłowska, M., and Siepak, J. 2006. Enhancement of methanogenesis at a municipal landfill site by addition of sewage sludge. Environmental Engineering Science 23(4), 673–679.
- [54] Pawłowska et al. 2008 – Pawłowska, M., Siepak, J., Pawłowski, L. and Pleczyński, J. 2008. Method for intensification of methane production in refuse collection depot, Patent no EP 08165558.
- [55] Pawłowska et al. 2011 – Pawłowska, M., Rożej, A. and Stępniewski, W. 2011. The effect of bed properties on methane removal in an aerated biofilter – Model studies. Waste Management 31(5), 903–913.
- [56] Pieńkowski, D., 2012. The Jevons effect and the consumption of energy in the European Union, Problems of Sustainable Development/Problemy Ekorozwoju 8, 27–41.
- [57] Peters, G.P., et al. 2013. The challenge to keep global warming below 2°C. Nature Clim Change 3, 4–6.
- [58] Prather et al. 2012 – Prather, M.J., Holmes, C.D. and Hsu, J. 2012. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of the atmospheric chemistry. Geophys. Res. Let. 39, L09803.
- [59] Renforth, P. 2012. The potential of enhanced weathering in the UK Int. J. Green. Gas Cont. 10, 229–243.
- [60] Report IEA, 2013. OECD/IEA.
- [61] Robertson et al. 2011 – Robertson, D.E., Jacobson, S.A., Morgan, F., Berry, D. and Church, G.M. 2011. A new dawn for industrial photosynthesis. Photosynth. Res. 103, 269–277.
- [62] Royal Society of Chemistry, 2011, www.rsc.org/chemistry_world/News/2009/october.
- [63] Sayre, R. 2010. Microalgae: The potential for carbon capture. Bioscience 60(2), 722–727.
- [64] Schuiling, R.D. and Krijgsman, P. 2006. Enhanced weathering: An effective and cheap tool to sequester CO2. Clim. Change 74, 349–354.
- [65] Smetacek, V. et al. 2012. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319.
- [66] Stępniewski, W. and Pawłowska, M. 1996. A Possibility to Reduce Methane Emission from Landfills by Its Oxidation in the Soil Cover, Chemistry from the Protection of the Environment 2. Environmental Science Research Vol. 51, Plenum Press, New York, pp. 75–92.
- [67] Styring, S. 2011. Artificial photosynthesis for solar fuels. Faraday discussions 155 (Advance Article), 357.
- [68] Tarnocai et al. 2009 – Tarnocai, C., Canadell, J.G.E., Schuur, A.G., Kuhry, P., Mazhitova, G. and Zimov, S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycels 23, 2023–2028.
- [69] Thomas et al. 2010 – Thomas, R.M., Widger, P.C.B., Ahmed, S.M., Jeske, R.C., Hirahata, W., Lobkovsky, E.B. and Coates, G.W. 2010. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst. J. Am. Chem. Soc. 132, 16520–16525.
- [70] Tranvik L.J., et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314.
- [71] Uliasz-Bocheńczyk, A. 2010. Mineral sequestration of CO2 in suspensions containing mixtures of fly ashes and desulphurization waste, Gospodarka Surowcami Mineralnymi – Mineral Resources Managament 26(4), 109–118.
- [72] Uliasz-Bocheńczyk, A. 2011. Mineralna sekwestracja CO2 przy zastosowaniu zawiesin wodnych wybranych popiołów lotnych ze spalania węgla brunatnego (Mineral sequestration of CO2 using aqueous suspensions of selected fly ashes from the combustion of Lignite)., Gospodarka Surowcami Mineralnymi – Mineral Resources Managament 27(1), 145–154.
- [73] Uliasz-Bocheńczyk, A. and Mokrzycki, E. 2005. Przegląd możliwości utylizacji ditlenku węgla (An overview of CO2 utilisation), Wiertnictwo Nafta Gaz 22(1), 373–378.
- [74] Uliasz-Bocheńczyk, A. and Mokrzycki E. 2006. Fly ashes from Polish power plants and combined heat and power plants and conditions of their application for carbon dioxide utilization. Chemical Engineering Research and Design 84, 837–842.
- [75] Uliasz-Bocheńczyk, A. and Mokrzycki, E. 2013. Mineralna sekwestracja CO2 przy zastosowaniu odpadów energetycznych – próba oszacowania potencjału w Polsce (Mineral sequestration of CO2 with the use of energy waste – an attempt to estimate the Polish potential). Gospodarka Surowcami Mineralnymi – Mineral Resources Managament 29(3), 179–189.
- [76] US Patent No 4564513, Carbon dioxide recycled in manufacture of plastic.
- [77] Wall, G. 2013. Exergy, life and sustainable development. Problems of Sustainable Development/Problemy Ekorozwoju 8(1), 27–41.
- [78] Venkatesh, G. 2014. Sisyphean Struggle or Pyrrhic Victory? Problems of Sustainable Development/Problemy Ekorozwoju 9(2), 73–77.
- [79] Xue et al. 2014 – Xue, Y., You, J. and Shao, L. 2014. Understanding socio-technical barriers to sustainable mobility – insights from Demonstration Program of EVs in China. Problems of Sustainable Development/Problemy Ekorozwoju 9(1), 29–36.
- [80] Zhang et al. 2010 – Zhang, Y., Young, Y. and Chan, G. 2010. Sustainable Chemistry: imidazolium salts in biomass conversion and CO2 fixation. Energy and Environmental Science 3, 408–417.
- [81] Zaehle, S. and Dalmonech, D. 2011. Carbon and nitrogen interactions on land and global scales: Current understanding in modelling climate biosphere feedbacks. Curr. Opin. Environ. Sustain. 3, 311–320.
- [82] Zeebe, R.E. and Archer, D. 2005. Feasibility of ocean fertilization and its impact on future atmospheric CO2 levels. Geophys. Res. Lett. 32, 970–978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-149cec74-43a6-4485-830c-ac552f94d3d0