PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the effect of external heating in the human tissue: A finite element approach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal therapy which involves either raising or lowering tissue temperature to treat malignant cells needs precise acknowledgment of thermal history inside the biological system to ensure effective treatment. For this purpose, this study presents a two-dimensional unsteady finite element model (FEM) of the bioheat transfer problem based on Pennes bio-heat equation to analyze the thermal response of tissue subject to external heating. Crank-Nikolson scheme was used for the unsteady solution. A finite element code was developed using C language to calculate results. The obtained numerical result was compared with the analytical and other numerical results available in the literature. A good agreement was found from the comparison. Temperature distribution inside the human body due to constant and sinusoidal spatial and surface heating were analyzed. Response to point heating was also investigated. Moreover, a sensitivity analysis was carried out to know the effect of various parameters, i.e. blood temperature, thermal conductivity, and blood perfusion rate on tissue temperature. The outcome of this study will be helpful for the researchers and physicians involved in the thermal treatment of human tissue.
Rocznik
Strony
251--262
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Department of Industrial and Production Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
  • Department of Industrial and Production Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
  • Department of Mathematics, Shahjalal University of Science and Technology,Sylhet, Bangladesh
  • Department of Industrial and Production Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
Bibliografia
  • 1. Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology. 1948:1(2):93-122.
  • 2. Scott JA. A finite element model of heat transport in the human eye. Physics in Medicine and Biology. 1988:33(2):227.
  • 3. Ooi EH, Ang W-T, Ng EYK. Bioheat transfer in the human eye: a boundary element approach. Engineering Analysis with Boundary Elements. 2007;31(6):494-500.
  • 4. Kenneth DR, Hayes LJ. Analysis of tissue injury by burning: comparison of in situ and skin flap models. International Journal of Heat and Mass Transfer. 1991:34(6):1393-1406.
  • 5. Torvi DA, Dale JD. A finite element model of skin subjected to a flash fire. Journal of Biomechanical Engineering. 1994;116(3):250-255.
  • 6. Bagaria HG, Johnson DT. Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment. International Journal of Hyperthermia. 2005;21(1):57-75.
  • 7. Javidi M, Heydari M, Karimi A, et al. Evaluation of the effects of injection velocity and different gel concentrations on nanoparticles in hyperthermia therapy. Journal of Biomedical Physics & Engineering. 2014;4(4):151-162.
  • 8. Liu H-L, Chen Y-Y, Yen J-Y, Lin W-L. Thermal lesion formation and determination for external ultrasound thermal therapy. Biomedical Engineering: Applications, Basis and Communications. 2003;15(3):124-132.
  • 9. Mizera A, Gambin B. Modelling of ultrasound therapeutic heating and numerical study of the dynamics of the induced heat shock response. Communications in Nonlinear Science and Numerical Simulation. 2011;16(5):2342-2349.
  • 10. Sukru O, Helhel S, Cerezci O. Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT). Burns. 2008;34(1):45-49.
  • 11. Rabin Y, Shitzer A. Numerical solution of the multidimensional freezing problem during cryosurgery. Journal of Biomechanical Engineering. 1998;120(1):32-37.
  • 12. Yeung CJ, Atalar E. A Green’s function approach to local rf heating in interventional MRI. Medical Physics. 2001;28(5):826-832.
  • 13. Supan, Tungjitkusolmun, Staelin ST, Haemmerich D, et al. Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Transactions on Biomedical Engineering. 2002;49(1):3-9.
  • 14. Sturesson C, Andersson-Engels S. A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications. Physics in Medicine and Biology.1995:40(12):2037-2052.
  • 15. Whiting P, Dowden JM, Kapadia PD, Davis MP. A one-dimensional mathematical model of laser induced thermal ablation of biological tissue. Lasers in Medical Science. 1992:7:357-368.
  • 16. Nyborg WL. Solutions of the bio-heat transfer equation. Physics in Medicine and Biology. 1988;33(7):785.
  • 17. Deng Z_S, Liu J. Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies. Journal of Biomechanical Engineering. 2002;124(6):638-649.
  • 18. Emmanuel K, Lakhssassi A, Vaillancourt R. Temperature distribution in living biological tissue simultaneously subjected to oscillatory surface and spatial heating: analytical and numerical analysis. International Mathematical Forum. 2012;7(48):2373-2392.
  • 19. Liu K-C. Thermal propagation analysis for living tissue with surface heating. International Journal of Thermal Sciences. 2008;4(5):507-513.
  • 20. Ahmadikia H, Fazlali R, Moradi A. Analytical solution of the parabolic and hyperbolic heat transfer equations with constant and transient heat flux conditions on skin tissue. International Communications in Heat and Mass Transfer. 2012;39(1):121-130.
  • 21. Shih T-C, Yuan P, Lin W-L, Kou H-S. Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface. Medical Engineering & Physics. 2007;29(9):946-953.
  • 22. Karaa S, Zhang J, Yang F. A numerical study of a 3D bioheat transfer problem with different spatial heating. Mathematics and Computers in Simulation. 2005;68(4):375-388.
  • 23. Kengne E Mellal I, Hamouda MB, Lakhssassi A. A Mathematical Model to Solve Bio-Heat Transfer Problems through a Bio-Heat Transfer Equation with Quadratic Temperature-Dependent Blood Perfusion under a Constant Spatial Heating on Skin Surface. Journal of Biomedical Science and Engineering 2014;7(9):721.
  • 24. Sharma PR, Ali S, Katiyar VK. Mathematical modeling of temperature distribution on skin surface and inside biological tissue with different heating. 13th International Conference on Biomedical Engineering. Springer, Berlin, Heidelberg, 2009.
  • 25. Yuan P, Liu H-E, Chen C-W, Kou H-S. Temperature response in biological tissue by alternating heating and cooling modalities with sinusoidal temperature oscillation on the skin. International Communications in Heat and Mass Transfer. 2008;35(9):1091-1096.
  • 26. Leilei C, Qin Q-H, Zhao N. An RBF–MFS model for analysing thermal behaviour of skin tissues. International Journal of Heat and Mass Transfer. 2010;53(7):1298-1307.
  • 27. Deng Z-S, Liu J. Parametric studies on the phase shift method to measure the blood perfusion of biological bodies. Medical Engineering & Physics. 2000;22(10):693-702.
  • 28. Liu J, Xu LX. Estimation of blood perfusion using phase shift in temperature response to sinusoidal heating at the skin surface. IEEE Transactions on Biomedical Engineering. 1999;46(9):1037-1043.
  • 29. Partridge PW, Wrobel LC. A coupled dual reciprocity BEM/genetic algorithm for identification of blood perfusion parameters. International Journal of Numerical Methods for Heat & Fluid Flow. 2009;19(1):25-38.
  • 30. Mukaddes AMM, Ogino M, Shioya R. Performance evaluation of domain decomposition method with sparse matrix storage schemes in modern supercomputer. International Journal of Computational Methods. 2014;11(supp01):1344007.
  • 31. Mukaddes AMM, Shioya R, Masao O, et al. Finite Element Based Analysis of Bio-Heat Transfer in Human Skin During Burn and Afterwards. International Journal of Computational Methods. https://doi.org/10.1142/S0219876220410108
  • 32. Holmes KR. Biological structures and heat transfer. Allerton Workshop on the Future of Biothermal Engineering. 1997.
  • 33. Carslaw HS, Jaeger JC. Conduction of heat in solids. Oxford: Clarendon Press, 1959, 2nd ed. (1959).
  • 34. Leonard JB, Foster KR, Athley TW. Thermal properties of tissue equivalent phantom materials. IEEE Transactions on Biomedical Engineering. 1984;31(7):533-536.
  • 35. London RA, Glinsky ME, Zimmerman GB, et al. Laser-Tissue Interaction Modeling With LATIS. Applied Optics. 1997;36(34):9068-9074.
  • 36. Deng Z-S, Liu J. Monte Carlo method to solve multidimensional bioheat transfer problem. Numerical Heat Transfer: Part B: Fundamental. 2002;42(6):543-567.
  • 37. Habash R, Bansal R, Krewski D, et al. Thermal therapy, part 1: an introduction to thermal therapy. Critical Reviews in Biomedical Engineering. 2006;34(6):459-489.
  • 38. Habash R, Bansal R, Krewski D, et al. Thermal therapy, part 2: hyperthermia techniques. Critical Reviews in Biomedical Engineering. 2006;34(6):491-542.
  • 39. Habash R, Bansal R, Krewski D, et al. Thermal therapy, Part III: ablation techniques. Critical Reviews in Biomedical Engineering. 2007;35(1-2):37-121.
  • 40. Xiaoming H, Bischof JC. Quantification of temperature and injury response in thermal therapy and cryosurgery. Critical Reviews in Biomedical Engineering. 2003;31(5-6):355-422.
  • 41. Liu J, Xu LX. Boundary information based diagnostics on the thermal states of biological bodies. International Journal of Heat and Mass Transfer. 2000;43(16):2827-2839.
  • 42. Ma N, Gao X, Zhang XX. Two-Layer Simulation Model of Laser-Induced Interstitial Thermo-Therapy. Lasers in Medical Science. 2004;18:184-189.
  • 43. Scott JA. The computation of temperature rises in the human eye induced by infrared radiation. Physics in Medicine and Biology. 1988:33(2):243-257.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14976b8b-b297-47a3-bfdc-87611f1a12fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.