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ON THE CONTINGENT OF THE GRAPH OF THE SUM

OF TWO MAPPINGS

MAŁGORZATA TUROWSKA

Abstract

It is shown that the graph of the sum of two Lipschitz mappings of the real line into
a normed space of infinite dimension, whose graphs have tangents, need not have a tan-
gent. Moreover, it turns out that the contingent of the graph of their linear combination
may depend on the coefficients of that combination in quite "nonlinear" way.

Definition 1. [5]. Let ∅ 6= M ⊂ Z, where Z is a real normed space, and
z ∈ clM . The set
{

v ∈ Z : ∃(zn)n∈N, zn ∈M, lim
n→∞

zn = z, ∃(λn)n∈N, λn > 0: lim
n→∞

λn(zn − z) = v
}

is called the tangent cone to M at z and is denoted by TanM (z). The
elements of TanM (z) are called vectors tangent toM at z. The set TanM (z)
is also called the contingent of M at z ([1], [4]).

We will use a more short term “contingent”.
It is well known that TanM (z) is a nonempty closed subset of Z and

0Z ∈ TanM (z), where 0Z denotes the zero vector of Z.
By G(f) we denote the graph of a mapping f . We will also write Tf (x0)

instead of TanG(f)

(

(x0, f(x0))
)

.

Theorem 1. [5]. Let X and Y be real normed spaces. If f : X → Y is

differentiable (in the Fréchet sense) at x0 ∈ X, then Tf (x0) is a linear

subspace of X × Y and Tf (x0) = G
(

f ′(x0)
)

.

Let us recall a condition (in a sense, converse of Theorem 1) implying
the differentiability of a mapping at a point.

Theorem 2. [2], [6]. Let X and Y be real normed spaces of finite dimension

and U ⊂ X be an open set. Assume that f : U → Y is continuous at x0 ∈ U

and Tf (x0) is a linear subspace of X × Y which does not contain vertical
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vectors (i.e. vectors of the form (0X , y) ∈ X × Y , y 6= 0Y ). Then f is

differentiable at x0.

The combination of Theorem 2 and Theorem 1 may be regarded as a
geometric criterion for the differentiability of a mapping at a point in the
case of finite-dimensional spaces.

Theorem 3. [3]. Let X, Y be real normed spaces, finite-dimensional or

not, and U ⊂ X an open set. Let g : U → Y be continuous at a point

x0 ∈ U . Assume that F : U → Y is differentiable at x0. Then

(a) TF+g(x0) =
{(

u, F ′(x0)u+ v
)

: (u, v) ∈ Tg(x0)
}

;
(b) Tg(x0) is homeomorphic to TF+g(x0), where the natural homeomor-

phism H : Tg(x0)→ TF+g(x0) is given by

H(u, v) = (u, F ′(x0)u+ v);

(c) if Tg(x0) is a linear subspace of X × Y , then H is a linear isomor-

phism.

Theorem 4. Let Y be a normed space, dimY ≤ ∞, and let f : R → Y be

continuous at t0. Then

Tαf (t0) = {(u, αv) : (u, v) ∈ Tf (t0)}.

for each α ∈ R.

The proof is immediate making use of Definition 1.

Corollary 5. Let Y be a normed space, dimY ≤ ∞. Let f : R → Y be

continuous at 0, f(0) = 0Y , and such that

Tf (0) = {ξ(1, y) : ξ ∈ R}

with some y ∈ Y. Then

Tαf (0) = {ξ(1, αy) : ξ ∈ R}

for each α ∈ R.

Now, let two mappings f : R → Y , g : R → Y be given. Assume that
the contingents of their graphs are known. What can be said about the
contingent of the graph of the sum f + g? It turns out that the answer
depends on whether Y is finite-dimensional or not.
To compare the results, we assume first that dimY < ∞. Let t0 ∈ R

and f : R → Y , g : R → Y be given, and assume that the contingents
Tf (t0), Tg(t0) are one-dimensional linear non-vertical subspaces of R× Y .
By Theorem 2, f and g are differentiable at t0. Then, it is easily checked
that

Tf (t0) =
{

ξ
(

1, f ′(t0)
)

: ξ ∈ R
}

;
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Tg(t0) =
{

ξ
(

1, g′(t0)
)

: ξ ∈ R
}

;

Tαf (t0) =
{

ξ
(

1, αf ′(t0)
)

: ξ ∈ R
}

for each α ∈ R;

Tαf+βg(t0) =
{

ξ
(

1,
(

αf ′(t0) + βg′(t0)
))

: ξ ∈ R
}

for each α ∈ R, β ∈ R.

Thus if dimY < ∞, then in the differentiable case (what is equivalent
to the properties of contingents described in Theorems 1, 2) the contingent
of the graph of the linear combination of mappings is equal to the linear
combination of the contingents with respect to their second components.
If mappings f : R → Y and g : R → Y are differentiable then the con-

tingent of the graph of the linear combination of this mappings is equal
to the linear combination of the contingents with respect to their second
components, it follows from Theorem 3.
This is generally no longer true for infinite-dimensional Y even if the

contingents of f and g are linear subspaces. The following example shows
that the contingent of the graph of the sum of mappings may be trivial
even if the contingent of the graph of each of mappings is a nontrivial
vector space.
Now we are coming up to the main result of the paper.

Example 6. Let Y = l2 be the classical Hilbert space, {en : n ∈ N} the
standard orthonormal base of Y . Choose any two elements y1, y2 of Y and
a number c > 1. Consider the mappings f : [−1, 1]→ Y , g : [−1, 1] → Y

defined for t ∈ [0, 1] as follows

f(t) =























0Y if t = 0,

ct− c1−2n

c− 1
· en +

c1−2n − t

c− 1
· y1 if t ∈

(

c−2n, c1−2n
]

, n ∈ N,

c2−2n − t

c− 1
· en +

ct− c2−2n

c− 1
· y1 if t ∈

(

c1−2n, c2−2n
]

, n ∈ N,

g(t) =



























0Y if t = 0,

c1−2n − t

c− 1
· en+1 +

ct− c1−2n

c− 1
· y2 if t ∈

(

c−2n, c1−2n
]

, n ∈ N,

ct− c2−2n

c− 1
· en +

c2−2n − t

c− 1
· y2 if t ∈

(

c1−2n, c2−2n
]

, n ∈ N,

and f(t) = −f(−t), g(t) = −g(−t) for t ∈ [−1, 0). Note that f , g are
continuous on [−1, 1].
We will show that

1) f and g are Lipschitz;
2) f and g are not differentiable at 0;
3) Tf (0) = {ξ(1, y1) : ξ ∈ R};
4) Tg(0) = {ξ(1, y2) : ξ ∈ R};
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5) given any two real numbers α, β, we have

Tαf+βg(0) =























{(0, 0Y )} if
α

β
> 0;

{

ξ

(

1,
α2

α− β
y1 −

β2

α− β
y2

)

: ξ ∈ R

}

if
α

β
< 0;

{ξ(1, αy1 + βy2) : ξ ∈ R} if α = 0 or β = 0.

Proof.

1) Since f |(0,1] is piecewise differentiable, we get from the definition of
f that

f ′(t) =











cen − y1

c− 1
if t ∈

(

c−2n, c1−2n
]

, n ∈ N,

cy1 − en

c− 1
if t ∈

(

c1−2n, c2−2n
]

, n ∈ N.

This yields by the mean value theorem, that f is Lipschitz on each
interval

(

c−2n, c2−2n
]

, n ∈ N, with the constant

Lf = max

{

c+ ‖y1‖

c− 1
,
c‖y1‖+ 1

c− 1

}

.

It follows that f is Lipschitz with the constant Lf on each
[

c−2n, 1
]

,
n ∈ N, hence by continuity, f is Lipschitz on [0, 1]. Finally f is
Lipschitz on [−1, 1] with the same constant Lf , what was to be
shown. The same argument applies to g, and we obtain that g is

Lipschitz with constant Lg = max

{

c+ ‖y2‖

c− 1
,
c‖y2‖+ 1

c− 1

}

.

2) Observe that f is not differentiable at t = 0 because the limit of the
ratio

f(c1−2n)

c1−2n
= en

does not exist for n→∞. The same holds for g.
3) Next we show that

(1) Tf (0) = {ξ(1, y1) : ξ ∈ R}.

Let v = (ξ, µ) ∈ Tf (0), v 6= 0. There exist a sequence (tn)n∈N,
tn ∈ [−1, 1], tn → 0, and a sequence (λn)n∈N, λn > 0, such that

(2) λntn → ξ and λnf(tn)→ µ as n→∞.

First assume that tn > 0, n ∈ N. Generally, the sequence (tn)n∈N is
composed of two subsequences: the terms of the first one belong to
the intervals of the form

(

c−2m, c1−2m
]

while the terms of the second

subsequence are in the intervals of the form
(

c1−2m, c2−2m
]

. Since
the arguments in both cases are alike, we will restrict ourselves to
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the first case, i.e. suppose that all tn hit the intervals of the form
(

c−2m, c1−2m
]

. It is easy to see that there exists a sequence (kn)n∈N,

kn ∈ N, kn → ∞, such that c−2kn < tn ≤ c1−2kn for n ∈ N. Now
(2) can be written as follows

(3) λntn −→
n→∞

ξ

and

(4) λnf(tn) = λn
ctn − c1−2kn

c− 1
· ekn + λn

c1−2kn − tn

c− 1
· y1 −→

n→∞
µ.

Multiplying (4) by ekn (scalar multiplication), we obtain

(5) lim
n→∞

λn
ctn − c1−2kn

c− 1
= 0,

and from (5) and (3) we get

(6) lim
n→∞

λnc
1−2kn

c− 1
=

cξ

c− 1
.

Consequently, (6) and (3) imply

lim
n→∞

λn
c1−2kn − tn

c− 1
= lim

n→∞

λnc
1−2kn

c− 1
− lim

n→∞

λntn

c− 1
=

cξ

c− 1
−

ξ

c− 1
= ξ.

Therefore from (4) we get µ = ξy1, hence v = ξ(1, y1).

The case tn ∈
(

c1−2m, c2−2m
]

, as was mentioned above, is treated
analogously.

Now let us suppose that (2) holds for tn < 0, n ∈ N. Since f is
odd, we have λnf(−tn) → −µ, whence by the previous argument,
we have −µ = (−ξ)y1 which again yields v = ξ(1, y1).
Conversely, take any nonzero vector v = ξ(1, y1) and consider two

sequences (tn)n∈N, (λn)n∈N defined by

tn = c−2nsgn ξ, λn = c2n|ξ|, n ∈ N.

Since f is odd and f
(

c−2n
)

= c−2ny1, we have for each n ∈ N

λn

(

tn, f (tn)
)

= c2n|ξ|
(

c−2nsgn ξ, f
(

c−2nsgn ξ
) )

=

=
(

ξ, c2n|ξ|sgn ξf
(

c−2n
) )

= ξ(1, y1) = v.

Thus (1) is proved.
4) The mapping g is similar to f . Applying the same arguments as

for f , we obtain

Tg(0) = {ξ(1, y2) : ξ ∈ R}.
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5) First, let us prove that

(7) Tf+g(0) = {(0, 0Y )}.

We will proceed by contradiction. Assume that (ξ, v) is a nonzero
element of Tf+g(0) and ξ > 0. By Definition 1, there exists a se-
quence (tk)k∈N, tk ∈ (0, 1], tk → 0, and there exists a sequence
(λk)k∈N, λk > 0, such that

λktk → ξ and λk(f + g)(tk)→ v as k →∞.

There are two cases to consider.
(i) First suppose that there exists a sequence (nk)k∈N of positive

integers such that tk ∈
(

c−2nk , c1−2nk

]

for each k ∈ N. We then
get

λk(f + g)(tk) =λk ·
ctk − c1−2nk

c− 1
· enk

+ λk ·
c1−2nk − tk

c− 1
· y1+

+ λk ·
c1−2nk − tk

c− 1
· enk+1 + λk ·

ctk − c1−2nk

c− 1
· y2 −→

k→∞
v.

(8)

Scalar multiplication of (8) by enk
yields

λk

(

ctk − c1−2nk

)

−→
k→∞

0.

It follows that

λkc
1−2nk −→

k→∞
cξ.

Multiplying (8) by enk+1, we obtain λk

(

c1−2nk − tk
)

−→
k→∞

0. It

follows that
λkc

1−2nk −→
k→∞

ξ,

whence cξ = ξ; a contradiction because of ξ 6= 0 and c > 1.
(ii) Assume now that there exists a sequence (nk)k∈N of positive

integers such that tk ∈
(

c1−2nk , c2−2nk

]

for each k ∈ N. We
then get

(9) λk(f+g)(tk) = λktkenk
+λk

ctk − c2−2nk

c− 1
·y1+λk

c2−2nk − tk

c− 1
·y2 −→

k→∞
v

Multiplying (9) by enk
we obtain λktk → 0, whence ξ = 0;

a contradiction.
We conclude that

Tf+g(0) = {(0, 0Y )}.

Thus if dimY = ∞, the contingent of the graph of the sum of
mappings with nontrivial linear contingents may be trivial.
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In the case when α or β equals zero, we have the same situation
as in Corollary 5, so we omit the proof.

Now assume that
α

β
> 0. If α = β then from Corollary 5 and (7)

we obtain

Tα(f+g)(0) = {(0, 0Y )}.

Consider the case α 6= β.
Suppose that (ξ, w) is a nonzero element of the set Tαf+βg(0). With-
out loss of generality we may assume that ξ > 0. Then by Defini-
tion 1, there exists a sequence (tk)k∈N, tk ∈ (0, 1], tk → 0, and there
exists a sequence (λk)k∈N, λk > 0, such that

λktk → ξ and λk(αf + βg)(tk)→ w as k →∞.

The following two cases are possible:
(j) There exists a sequence (nk)k∈N, nk ∈ N, such that

tk ∈
[

c−2nk , c1−2nk

)

.

Then

λkαf(tk) + λkβg(tk) =

= λkα
ctk − c1−2nk

c− 1
· enk

+ λkα
c1−2nk − tk

c− 1
· y1+

+ λkβ
c1−2nk − tk

c− 1
· enk+1 + λkβ

ctk − c1−2nk

c− 1
· y2 −→

k→∞
w.

(10)

Since 0 < λkc
−2nk ≤ λktk ≤ λkc

1−2nk = cλkc
−2nk for k ∈ N

and λktk → ξ, we obtain that the sequence
(

λkc
1−2nk

)

k∈N
is

bounded by cξ. Multiplying (10) by enk
, we obtain

λkα
ctk−c

1−2nk

c−1 + λkα
c1−2nk−tk

c−1 ·
〈

y1, enk

〉

+ λkβ
ctk−c

1−2nk

c−1 ·
〈

y2, enk

〉

−→
k→∞

0

(where
〈

·, ·
〉

stands for the scalar product). This implies

λkα
(

ctk − c1−2nk

)

−→
k→∞

0.

It follows

αcλk

(

tk − c−2nk

)

−→
k→∞

0,

and we obtain

λkc
−2nk −→

k→∞
ξ.

Now, multiplying (10) by enk+1, we get

λkα
c1−2nk−tk

c−1 ·
〈

y1, enk+1

〉

+λkβ
c1−2nk−tk

c−1 +λkβ
ctk−c

1−2nk

c−1 ·
〈

y2, enk+1

〉

−→
k→∞

0,
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whence

β
(

λkc
1−2nk − λktk

)

−→
k→∞

0.

Since λktk → ξ and λkc
−2nk → ξ, we have βξ = 0; a contradic-

tion because ξ > 0 and β 6= 0. In this case we have ξ = 0 and
w = 0Y .
Observe that this conclusion is independent of the choice of
nonzero numbers α, β.

(jj) For each k ∈ N there exists nk ∈ N, nk → ∞, such that
tk ∈

[

c1−2nk , c2−2nk

)

. Then

λk(αf + βg)(tk) =

= αλk

c2−2nk − tk

c− 1
· enk

+ αλk

ctk − c2−2nk

c− 1
· y1+

+ βλk

ctk − c2−2nk

c− 1
· enk

+ βλk

c2−2nk − tk

c− 1
· y2 −→

k→∞
w.

(11)

Since 0 < λkc
1−2nk ≤ λktk ≤ λkc

2−2nk = cλkc
1−2nk for each

k ∈ N and λktk → ξ, the sequence
(

λkc
2−2nk

)

k∈N
is bounded

by cξ. Multiplying (11) by enk
, we obtain

αλk

c2−2nk − tk

c− 1
+ αλk

ctk − c2−2nk

c− 1
·
〈

y1, enk

〉

+

+ βλk

ctk − c2−2nk

c− 1
+ βλk

c2−2nk − tk

c− 1
·
〈

y2, enk

〉

−→
k→∞

0.

Therefore

αλkc
2−2nk − αλktk + cβλktk − βλkc

2−2nk −→
k→∞

0.

Since λktk → ξ as k →∞, we get

(12) λkc
2−2nk −→

k→∞

(α− cβ)ξ

α− β
.

Since the sequence
(

λkc
2−2nk

)

k∈N
is bounded by ξ and cξ, we

obtain, in view of (12),

1 ≤
α− cβ

α− β
≤ c.

The following two cases are possible:
(•) α > 0 and β > 0.

If α > β then we have α − β ≤ α − cβ ≤ cα − cβ. It
follows that c = 1; a contradiction because of c > 1.
If α < β then α − β ≥ α − cβ ≥ cα − cβ. We get c = 1;
a contradiction.
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(••) β < 0 and α < 0.
Assume α > β. Then α − β ≤ α − cβ ≤ cα − cβ. Thus
c = 1; a contradiction.
If α < β then α− β ≥ α− cβ ≥ cα− cβ. It follows that
c = 1; a contradiction.

In this situation (i.e. whenever α and β are of the same sign)
we get ξ = 0 and w = 0Y (because αf + βg is Lipschitz).

We have thus shown

Tαf+βg(0) = {(0, 0Y )} if
α

β
> 0.

Now, assume that
α

β
< 0.

Let (ξ, w) ∈ Tαf+βg(0). Without loss of generality we may as-
sume ξ ≥ 0. By Definition 1, there exists a sequence (tk)k∈N,
tk ∈ (0, 1], tk → 0, and there exists a sequence (λk)k∈N, λk > 0,
such that

(13) λktk → ξ and λk(αf + βg)(tk)→ w as k →∞.

The following two cases are possible:
(⋆) There exists a sequence (nk)k∈N of positive integers, such that

tk ∈
[

c−2nk , c1−2nk

)

.

This case is similar to the case (j), so we omit the details. We
get ξ = 0 and w = 0Y .

(⋆⋆) For each k ∈ N there exists nk ∈ N such that

tk ∈
[

c1−2nk , c2−2nk

)

.

Then

λk(αf + βg)(tk) =

= αλk

c2−2nk − tk

c− 1
· enk

+ αλk

ctk − c2−2nk

c− 1
· y1+

+ βλk

ctk − c2−2nk

c− 1
· enk

+ βλk

c2−2nk − tk

c− 1
· y2 −→

k→∞
w.

(14)

Since 0 < λkc
1−2nk ≤ λktk ≤ λkc

2−2nk = cλkc
1−2nk for each

k ∈ N, and λktk → ξ, the sequence (λkc
2−2nk)k∈N is bounded

by cξ.
Scalar multiplication of (14) by enk

yields

αλk

c2−2nk − tk

c− 1
+ αλk

ctk − c2−2nk

c− 1
·
〈

y1, enk

〉

+

+ βλk

ctk − c2−2nk

c− 1
+ βλk

c2−2nk − tk

c− 1
·
〈

y2, enk

〉

−→
k→∞

0.
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Thus

αλkc
2−2nk − αλktk + cβλktk − βλkc

2−2nk −→
k→∞

0.

Since λktk → ξ as k →∞, we get

(15) λkc
2−2nk →

(α− cβ)ξ

α− β
as k →∞.

Since the sequence
(

λkc
2−2nk

)

k∈N
is bounded by ξ and cξ, we

obtain in view of (15), that

1 ≤
α− cβ

α− β
≤ c.

We have

λk(αf + βg)(tk) =

=
enk

c− 1

(

αλkc
2−2nk − αλktk + cβλktk − βλkc

2−2nk

)

+

+
αy1

c− 1

(

cλktk − λkc
2−2nk

)

+
βy2

c− 1

(

λkc
2−2nk − λktk

)

=

=
enk

c− 1

(

(α− β)λkc
2−2nk + (cβ − α)λktk

)

+

+
αy1

c− 1

(

cλktk − λkc
2−2nk

)

+
βy2

c− 1

(

λkc
2−2nk − λktk

)

.

Passing to the limit as k →∞ we get from (15) and (13)

λk(αf + βg)(tk) −→
k→∞

ξ

(

α2

α− β
y1 −

β2

α− β
y2

)

.

Thus

w = ξ

(

α2

α− β
y1 −

β2

α− β
y2

)

.

Suppose that ξ < 0. Since αf + βg is odd, we obtain, applying

the previous argument, that w = ξ

(

α2

α− β
y1 −

β2

α− β
y2

)

. Thus we

have shown that

(16) Tαf+βg(0) ⊂

{

ξ

(

1,
α2

α− β
y1 −

β2

α− β
y2

)

: ξ ∈ R

}

.

To show the reverse inclusion, take any vector
(

ξ, ξ

(

α2

α− β
y1 −

β2

α− β
y2

))

with ξ > 0.
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Put tn =
c2−2n(α− β)

α− cβ
and λn =

(α− cβ)c2n−2ξ

α− β
for each n ∈ N.

Then

c1−2n <
c2−2n(α− β)

α− cβ
< c2−2n,

because
α

β
< 0. We obviously have λntn = ξ for each n ∈ N. Then

λn(αf + βg)(tn) =

=
(α− cβ)c2n−2ξ

(α− β)(c− 1)

(

(α− β)c2−2n + (cβ − α)
c2−2n(α− β)

α− cβ

)

en+

+
α(α− cβ)c2n−2ξ

(c− 1)(α− β)

(

c
(α− β)c2−2n

(α− cβ)
− c2−2n

)

y1+

+
β(α− cβ)c2n−2ξ

(c− 1)(α− β)

(

c2−2n −
(α− β)c2−2n

(α− cβ)

)

y2 =
α2ξ

α− β
· y1 −

β2ξ

α− β
· y2

for each n ∈ N. If ξ < 0, then we take t′n = −tn and λ′n = −λn

because αf + βg is odd.
We have proved that

(17)

{

ξ

(

1,
α2

α− β
y1 −

β2

α− β
y2

)

: ξ ∈ R

}

⊂ Tαf+βg(0).

From (16) and (17) we get

Tαf+βg(0) =

{

ξ

(

1,
α2

α− β
y1 −

β2

α− β
y2

)

: ξ ∈ R

}

if
α

β
< 0.

�

The question arises as to whether the contingent of the graph of the sum
of two mappings with trivial contingents should be trivial.
The answer is NO.
For instance, take F = f + g where f and g are from the Example 6 and

put G = −F . Then F , G have trivial contingents at 0 whereas their sum
W = F +G = 0 obviously has a horizontal contingent

TW (0) =
{

ξ(1, 0Y ) : ξ ∈ R
}

,

thus nontrivial.
On the other hand, the contingent of the graph of the sum f+g is trivial,

if f is differentiable at 0 and Tg(0) is trivial. This follows from Theorem 3
(a) or (b).
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