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ON THE CONTINGENT OF THE GRAPH OF THE SUM
OF TWO MAPPINGS

MALGORZATA TUROWSKA

ABSTRACT

It is shown that the graph of the sum of two Lipschitz mappings of the real line into
a normed space of infinite dimension, whose graphs have tangents, need not have a tan-
gent. Moreover, it turns out that the contingent of the graph of their linear combination
may depend on the coefficients of that combination in quite "nonlinear" way.

Definition 1. [5]. Let () # M C Z, where Z is a real normed space, and
z € clM. The set

{v € Z: A(zn)nen, 2n € M, li_>m Zn =2, I An)nen, An > 00 lHm A, (2, — 2) = v}
n (oo}

n—oQ
is called the tangent cone to M at z and is denoted by Tanps(z). The

elements of Tan,/(z) are called vectors tangent to M at z. The set Tany/(2)
is also called the contingent of M at z ([1], [4]).

We will use a more short term “contingent”.

It is well known that Tanj;(z) is a nonempty closed subset of Z and
0z € Tanps(z), where 0z denotes the zero vector of Z.

By G(f) we denote the graph of a mapping f. We will also write T'¢(z)

instead of Tangs)( (o, f(w0)) ).

Theorem 1. [5]. Let X and Y be real normed spaces. If f: X — Y is
differentiable (in the Fréchet sense) at xog € X, then Tf(xo) is a linear
subspace of X x Y and Ty(zo) = G(f'(x0)).

Let us recall a condition (in a sense, converse of Theorem 1) implying
the differentiability of a mapping at a point.

Theorem 2. [2], [6]. Let X and Y be real normed spaces of finite dimension
and U C X be an open set. Assume that f: U =Y is continuous at xg € U
and T¢(xo) is a linear subspace of X x'Y which does not contain vertical
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vectors (i.e. wectors of the form (Ox,y) € X XY, y # Oy). Then f is
differentiable at xg.

The combination of Theorem 2 and Theorem 1 may be regarded as a
geometric criterion for the differentiability of a mapping at a point in the
case of finite-dimensional spaces.

Theorem 3. [3]|. Let X, Y be real normed spaces, finite-dimensional or
not, and U C X an open set. Let g: U — Y be continuous at a point
xog € U. Assume that F': U — 'Y 1is differentiable at xo. Then

(@) Tryg(wo) = { (i, F'(zo)u+0): (1,0) € Ty(ao) )
(b) Ty(xo) is homeomorphic to Tpyq4(x0), where the natural homeomor-
phism H: Ty(xo) = Trig(xo) is given by
H(u, ) = (u, F'(z0)u + v);
(c) if Ty(zo) is a linear subspace of X XY, then H is a linear isomor-
phism.

Theorem 4. Let Y be a normed space, dimY < oo, and let f: R — Y be
continuous at ty. Then

Tag(to) = {(u,av): (u,0) € T (to)}.
for each o € R.

The proof is immediate making use of Definition 1.

Corollary 5. Let Y be a normed space, dimY < oo. Let f: R — Y be
continuous at 0, f(0) = 0y, and such that

Tr(0) ={¢(L,y): € R}
with some y € Y. Then

Tar(0) ={&(1,ay): £ € R}
for each v € R.

Now, let two mappings f: R — Y, g: R = Y be given. Assume that
the contingents of their graphs are known. What can be said about the
contingent of the graph of the sum f 4 ¢7 It turns out that the answer
depends on whether Y is finite-dimensional or not.

To compare the results, we assume first that dimY < oco. Let t5 € R
and f: R — Y, g: R — Y be given, and assume that the contingents
T¢(to), Ty(to) are one-dimensional linear non-vertical subspaces of R x Y.
By Theorem 2, f and g are differentiable at ty. Then, it is easily checked
that

Ty(to) = {€(1, f'(t0)): € € RY;
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Ty(to) = {€(1, /(1) € € RB):
Tor(to) = {{(1 af! to)): e R} for each o € R;

Tartpg(to) {5( (af to) + B9’ (to))): e R} for each o € R, g € R.

Thus if dimY < oo, then in the differentiable case (what is equivalent
to the properties of contingents described in Theorems 1, 2) the contingent
of the graph of the linear combination of mappings is equal to the linear
combination of the contingents with respect to their second components.

If mappings f: R — Y and g: R — Y are differentiable then the con-
tingent of the graph of the linear combination of this mappings is equal
to the linear combination of the contingents with respect to their second
components, it follows from Theorem 3.

This is generally no longer true for infinite-dimensional Y even if the
contingents of f and g are linear subspaces. The following example shows
that the contingent of the graph of the sum of mappings may be trivial
even if the contingent of the graph of each of mappings is a nontrivial
vector space.

Now we are coming up to the main result of the paper.

Example 6. Let Y = 2 be the classical Hilbert space, {e,: n € N} the
standard orthonormal base of Y. Choose any two elements y;, y2 of Y and
a number ¢ > 1. Consider the mappings f: [-1,1] =Y, g: [-1,1] = YV
defined for ¢ € [0, 1] as follows

Oy if t=0,
ct —ct=2n =t . _ _
ft) = 262_1 cep + 0—212 Y1 1ft€(c n el 2”],n€N,
T —t ct — o™ " . B B
ﬁ'en 1 Y1 1ft€(c1 n 2 2”],n€N,
Oy if t=0,
1-2n 1—-2n
c —1 ct —c
g(t)— ﬁ‘@n+1+ 1 * Y2 1ft€(_2n 1_2n:|,n€N,
Ct_6272n 627271 —t )
——1 en + V1 - Yo if te (01_2",02_2"] , neN,

and f(t) = —f(—t), g(t) = —g(—t) for t € [-1,0). Note that f, g are
continuous on [—1, 1].
We will show that

1) f and g are Lipschitz;

2) f and g are not differentiable at 0;
) ( )_{‘E(lvyl)‘feR}v

4) Tg(0) = {€(1,92): £ € R};
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5) given any two real numbers «, (3, we have

{(0,0y)} if %>m
2 2
Tof1p9(0) = TP LEERY i 2 <0
9 g 7@_591 a_/ByQ €€ 1 ﬁ< )
{61, ay1 + By2): £ € R} if a=0or f=0.
Proof.
1) Since f](p,1) is piecewise differentiable, we get from the definition of
f that
) @ if te (0*2",01*2"] , neN,
f (t) - Cycl__ €n
1 if te (01*2”,02*2”] , neN.

This yields by the mean value theorem, that f is Lipschitz on each
interval (0_2”, 02_2”], n € N, with the constant

{C+ ly1ll ellyall + 1}
ax .

L=
! c—1 "7 ¢—1

It follows that f is Lipschitz with the constant Ly on each [0_2”, 1] ,

n € N, hence by continuity, f is Lipschitz on [0,1]. Finally f is

Lipschitz on [—1,1] with the same constant Ly, what was to be

shown. The same argument applies to g, and we obtain that g is

c+ llyell clly2ll + 1}

Lipschitz with constant L, = max

c—1 " ¢—1
2) Observe that f is not differentiable at ¢ = 0 because the limit of the
ratio
f(cl—2n)
c—2n  n

does not exist for n — oo. The same holds for g.
3) Next we show that

(1) Tf(0) = {&(1,31): £ € R}.
Let v = (&) € T¢(0), v # 0. There exist a sequence (t,)nen,
t, € [-1,1], t, — 0, and a sequence (Ap)nen, An > 0, such that

(2) Antn, — & and A\ f(tn,) > p as n — oo.

First assume that ¢, > 0, n € N. Generally, the sequence (,)nen is
composed of two subsequences: the terms of the first one belong to
the intervals of the form (c‘Qm, cl_2m] while the terms of the second
subsequence are in the intervals of the form (c1*2m,02*2m]. Since
the arguments in both cases are alike, we will restrict ourselves to



lim M\,

ON THE CONTINGENT OF THE GRAPH... 59

the first case, i.e. suppose that all ¢, hit the intervals of the form
(0_2’", 01_2’”} . It is easy to see that there exists a sequence (kyp)nen,
k, € N, k, — oo, such that ¢ 2kn < ¢ < 72k for n € N. Now
(2) can be written as follows

)\ntn — f
n—oo
and
ct, — Cl—?kzn CI—an —t
)\nf(tn) = Annfl ‘ €k, T )\n# “Y1 nﬁo

Multiplying (4) by ey, (scalar multiplication), we obtain

ct _le2kn
lim \,———— =0,

n—00 c—1
and from (5) and (3) we get

. )\ncl_%” c€
1m = .
n—o0 C — 1 C — 1

Consequently, (6) and (3) imply
0172’9" — ity . )\ntn C£ f
= lim =

c—1 n—oo ¢ — 1 i c—1 e—1 ec—1

&.
Therefore from (4) we get u = &y, hence v = &(1,y1).

The case t,, € (01_2’”, 02_2’”}, as was mentioned above, is treated
analogously.

Now let us suppose that (2) holds for ¢, < 0, n € N. Since f is
odd, we have A, f(—t,) — —u, whence by the previous argument,
we have —p = (—¢§)y; which again yields v = (1, y1).

Conversely, take any nonzero vector v = £(1,y;) and consider two
sequences (tn)nen, (An)nen defined by

tp =c sgné, A\, = €], neN.

Since f is odd and f (0_2") = ¢ 2"y, we have for each n € N
An(tn, f (tn) ) = ™[] (™ sgn&, f (¢ *"sgn€) ) =

= (& elsgnéf (7)) = &(L ) = v.
Thus (1) is proved.
The mapping ¢ is similar to f. Applying the same arguments as
for f, we obtain

Ty(0) = {&(1,92): £ € R}
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5) First, let us prove that
(7) Ty14(0) = {(0,0v)}-

We will proceed by contradiction. Assume that (£, v) is a nonzero
element of T, 4(0) and & > 0. By Definition 1, there exists a se-
quence (tg)ren, tr € (0,1], tx — 0, and there exists a sequence
(Ak)ken, Ak > 0, such that

Aty — & and Ae(f+9)(tx) = v as k — oo.
There are two cases to consider.

(i) First suppose that there exists a sequence (ny)ren of positive
integers such that ¢ € (C_Z"k, 61_2"’6} for each k € N. We then

get
(8)
cty — Cl—an Cl—an —tg
A tr) =)\ - . A ———— F
k(f +9) (k) =Nk po eny + Ak ———— "yt
1—2ny _ _ cl—2ny
c ik ctr — ¢
+ A “enptl T A —————— Y2 —> V.
c—1 -1 k—o00

Scalar multiplication of (8) by ey, yields

hy? (Ctk - Clian) k—> 0.
—00

It follows that

YR L ——
k—o00
Multiplying (8) by ey, +1, we obtain A (617271’“ — tk) k—> 0. It
—00
follows that

Apct 2 — €
k—o0

whence c€ = ¢; a contradiction because of £ # 0 and ¢ > 1.

(ii) Assume now that there exists a sequence (ny)ren of positive
integers such that ¢, € (cl_znk,cz_znk] for each k € N. We
then get

22— 2ny 2—2np
i _cl 'y1+)\k76 1 i
Multiplying (9) by e,, we obtain Ait; — 0, whence { = 0;
a contradiction.
We conclude that

Tryig(0) = {(0,0y)}.

Thus if dimY = oo, the contingent of the graph of the sum of
mappings with nontrivial linear contingents may be trivial.

(9) Me(f+9)(te) = Mitren, +Ak Y2 v
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In the case when « or § equals zero, we have the same situation
as in Corollary 5, so we omit the proof.

Now assume that % > 0. If & = (8 then from Corollary 5 and (7)

we obtain
Ta(f+g) (0) = {(Oon)}
Consider the case o # 3.
Suppose that (£, w) is a nonzero element of the set Ty r4g4(0). With-
out loss of generality we may assume that & > 0. Then by Defini-
tion 1, there exists a sequence (tx)ken, tx € (0,1], tx — 0, and there
exists a sequence (Ag)gen, Ak > 0, such that

Mt = & and Ag(af + Bg)(ty) —w as k — oo.

The following two cases are possible:
(j) There exists a sequence (ng)ren, ni € N, such that

tk 6 [C—an’cl—an) .

Then

Apaf(ty) + AeBg(ty) =

ety — 6172nk le2nk — t
(10) = Akaic ] “ep, + Apa 1 "Y1+

1-2n;, _ l=2ny
c ct c

+ A3 k “enj+1 M yy — w.

—1 —1 k—o00

Since 0 < A\pc™ 2™ < Nt < Ape! ™2 = e\ 2 for k € N
and A\ptp — &, we obtain that the sequence ()\kcl_%’f)
bounded by ¢£. Multiplying (10) by e, , we obtain

ken 18

ct _Cl—an cl—2nk_t ct _cl—an
Apo=+ c—1 + Ak c—1 s <y17e”k> + A f=E c—1 ' <y2;€nk> k—o00 0

(where <‘, > stands for the scalar product). This implies

ApQy (ctk — 01_2”’“) k—> 0.
—00

It follows

_ .—2n
Qe (tk c ’“) kjo 0,

and we obtain

e 2 — €
k—o0

Now, multiplying (10) by ey, +1, we get

Cl—an 7tk: 1—-2np

1—2ng, _
Ao s— ~<y1,enk+1>+)\k5%+)\k5mcc—71'<y%enk+1> P 0,
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whence

1-2n; _
I3 ()\kc k )\ktk) kjo 0.

Since A\itp — & and Ay 2™ — €, we have B¢ = 0; a contradic-
tion because £ > 0 and 5 # 0. In this case we have £ = 0 and
w = Oy.
Observe that this conclusion is independent of the choice of
nonzero numbers «, 3.

(jj) For each k € N there exists ny € N, ny — oo, such that
tr € [cl_an,CQ_Q”k). Then

Ak(ef + Bg)(tk) =
2—2ny _ _ 2 2ng
C tr ctp — ¢
(11) s E T I o
ety — CQank 0272nk —t
+BMN————en, T BN—————— Y2 — w.
—1 c—1 k—00

Since 0 < A\pc!™2™ < A\ptg, < A\ 2% = edpet ™2™ for each
k € N and A\t — &, the sequence ()\kcz_z”k)keN is bounded
by €. Multiplying (11) by e, , we obtain

2—-2n) _ _ 2 2ng
c tr ctp —c

Ap————— Ap———————
A 7 + aAg e 1 (Y1, eny )+

ety — 62—2nk 02_2nk — 1y
Ap—————— A . , — 0.

+Bk c—1 +Bk —1 <y2 6nk>k—>oo

Therefore

Oz)\kCQ_znk — aXptp + Bt — ,3/\]662_27”c — 0.
k—o00

Since A\t — € as k — oo, we get

(12) ke kjo a—pf
Since the sequence ()\kCQ_Q”k)k oy 18 bounded by & and c€, we

obtain, in view of (12),

a—cf

a—p

The following two cases are possible:

() >0 and g > 0.

If « > B then we have aa — < a — ¢ < ca — ¢B. It
follows that ¢ = 1; a contradiction because of ¢ > 1.
fa<fthena—>a—c¢f>ca—cB. We get c=1;
a contradiction.

1< <e.
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(oo) B <0and a<0.
Assume o > 3. Then a — 8 < a — ¢f < ca — ¢f. Thus
¢ = 1; a contradiction.
If « < B then a— > a—cB>ca—cp. It follows that
¢ = 1; a contradiction.

In this situation (i.e. whenever o and 8 are of the same sign)

we get £ =0 and w = Oy (because a.f + (¢ is Lipschitz).

We have thus shown

Tas+89(0) = {(0,0y)} if %>0.

@
Now, assume that — < 0.

Let (§,w) € Tqapig(0). Without loss of generality we may as-
sume £ > 0. By Definition 1, there exists a sequence (t)ken,
tr € (0,1], tx — 0, and there exists a sequence (Ag)ren, Ak > 0,
such that

(13) Mt = & and Ag(af + Bg)(ty) = w as k — oo.

The following two cases are possible:
(x) There exists a sequence (ng)gen of positive integers, such that

tk c [Cian, 61721/"}6) )
This case is similar to the case (j), so we omit the details. We

get £ =0 and w = Oy.
(xx) For each k € N there exists n, € N such that

tk‘ 6 [Cl_2nk, C2—27’Lk> .

Then
Ae(af + Bg)(tk) =
2—2np, _ 2720
- c tr ctp — ¢
(14) A s S nt

Ctk _ 62—2nk CQ—QTLk o tk

+ BN e F BN 2 — w.
c—1 c—1 k—oo

Since 0 < A\pc!™2™ < A\pty, < A\ 2% = edpet ™2™ for each
k € N, and A\t — &, the sequence (A\pc® 2"y is bounded

by c£.
Scalar multiplication of (14) by e, yields
2—27’Lk . . 2—2nk
c tr ctp —c
YR I Vi
AR TN T (Y1, eny )+
Ctk _ CQ—an CQ—QTLk _ tk
Np——————— + fNp————— - — 0.
+ Bk po| + Bk p <y2’enk>k—>oo
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Thus

a2 — adpty + Bty — BApc? T2 — 0.
k—oo

Since A\t — € as k — oo, we get
(a—ch)g
a—p

272nk)

(15) Apc? 2 as k — oc.

Since the sequence (/\kc is bounded by & and c£, we

obtain in view of (15), that

keN

1< «—ch <ec.
Sa-g =

We have
Ak(af + Bg)(tk) =
= % (Oz/\kcz_znk — aAgty + Bty — ﬁ)\kcz_an) +

o —2n —2n
+ p _yll (C)\ktk — )\kCQ 2 k) + f—iyi ()\kc2 e _ )\ktk) =
= (= B) M (B — ) Aity) +

o —2n —2n
+ j/ll (C)\ktk — )\kC2 2 k) + % ()\kC2 e _ Aktk) .

Passing to the limit as k — oo we get from (15) and (13)
2

o 32
wlaf + 8000 = € (2 gm - 2 gm).

Thus
042 52
w=£<a_ﬁyl—a_ﬂy2)-

Suppose that £ < 0. Since af + Bg is odd, we obtain, applying
2 2
p ﬁyg>. Thus we

the previous argument, that w = & < Y1 —
a—p «
have shown that
2

2
(16) Taf—‘rﬁg(o) C {5 <1a aci ﬁyl - aﬁ_ BZJQ) €€ R} .

To show the reverse inclusion, take any vector

2 2
e )

with £ > 0.
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EMa=f) (e

a—cf a—pf

Put t, = for each n € N.
Then
2—2n
c o —
le2n < ( 5) < 6272n,

a—cf

because — < 0. We obviously have A\,t,, = & for each n € N. Then

B
An(af 4 Bg)(tn) =

- (Oé*Cﬁ)C2n_25 B o B CQ_Qn(Oé*ﬁ) .
) <(a B)* ™ 4 (B a)ia—cﬁ ) nt

a(a _ 06)62n72£ (a o 5)027271 9 om
! @—um—6><c<a—w> - )y”
,B(Oé _ 05)6271—25 o (Oé _ ﬂ)CQ—Qn - Oé2€ 626
T e D7) Gzz_ (@ —cB) )”‘a—ﬁ'“‘a—ﬂy2

for each n € N. If £ < 0, then we take ¢/, = —t, and X, = =\,
because af + Bg is odd.
We have proved that

2 2
(17) {f <1, aoi Byl — aﬁ_ /By2> €€ R} C Taergg(O).

From (16) and (17) we get

a2

Taia,(0) =46 (1 _F LEeRy if 2 <0
af+pg\Y) = ’a—ﬂyl a_ByQ- 3 .

0

The question arises as to whether the contingent of the graph of the sum
of two mappings with trivial contingents should be trivial.
The answer is NO.

For instance, take F' = f 4+ g where f and g are from the Example 6 and
put G = —F. Then F', G have trivial contingents at 0 whereas their sum
W = F + G = 0 obviously has a horizontal contingent

Tw(0) = {£(1,0y): £ € R},

thus nontrivial.

On the other hand, the contingent of the graph of the sum f+ g is trivial,
if f is differentiable at 0 and T(0) is trivial. This follows from Theorem 3
(a) or (b).
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