PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anodic oxidation of AI-Cu and Al-Si aluminium alloys

Autorzy
Identyfikatory
Warianty tytułu
PL
Anodowe utlenianie stopów aluminium AI-Cu i Al-Si
Języki publikacji
EN
Abstrakty
EN
Laboratory tests of anodic oxidation of aluminium alloys were performed with the use of the following materials: AlCu4MgSi, AlSi12Cu3Mg, AlMg5 and for comparison A199,7. Various types of electrolytes were used with direct as well as impulse electric currents. The velocity of the formation of anodic coatings was evaluated. The micro-hardness of coatings were measured. In the case of Al-Cu alloys the velocity of the formation of oxide layers was raised by addition of organic acids to the sulphuric acid solution. The additive Al-1 which was elaborated in the Institute of Precision Mechanics enables to use high anodic current densities. The quality of anodic layers on cast Al-Si alloys is diminished by silicon grains inside oxide coatings. The high velocity of the formation of oxide coatings was obtained by the use of higher sulphuric acid concentration in the solution. The roughness of oxide layers was diminished by the use of impulse current.
PL
Przedstawiono wyniki prób laboratoryjnych anodowego utleniania stopów aluminium zawierających znaczące stężenia dodatków stopowych, w tym miedzi i krzemu. Podłoże stanowiły stopy typu AlCu4MgSi, AlSi12Cu3Mg, AlMg5 i dla porównania A199,7. W procesie anodowego utleniania stosowano roztwory o różnym składzie, prąd .stały lub impulsowy. Badano szybkość wytwarzania powłok tlenkowych i ich mikrotwardość. W przypadku stopów Al-Cu podwyższenie szybkości wytwarzania powłok tlenkowych uzyskano stosując dodatek kwasów organicznych do roztworów kwasu siarkowego. Opracowany w Instytucie Mechaniki Precyzyjnej dodatek Al-1 umożliwia prowadzenie, utleniania w warunkach podwyższonych gęstości prądu anodowego. Przy anodowym utlenianiu stopów odlewniczych zawierających wysokie stężenia krzemu, jakość powłok tlenkowych jest silnie obniżona przez wbudowane w warstwę ziarna krzemu. Zwiększenie szybkości wytwarzania powłok uzyskano, stosując podwyższone stężenia kwasu siarkowego w roztworze. Zastosowanie prądu impulsowego podniosło gładkość otrzymywanych powłok tlenkowych.
Rocznik
Tom
Strony
48--55
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Instytut Mechaniki Precyzyjnej, Warszawa
autor
  • Instytut Mechaniki Precyzyjnej, Warszawa
Bibliografia
  • [1] Akeret R., Bichsel H., Schwall E., Simon E., Textor M.: The influence of chemical composition and fabrication procedures on the properties of anodized aluminium surfaces. „Trans. Inst. Met. Finishing", 1990,68(1), p. 20-28.
  • [2] Habazaki H., Shimizu K., Thompson G.E., Wood G.C., Zhou X.: Effects of alloying elements in anodizing of aluminium. „Trans. Inst. Met. Finishing", 1997, 75(1), p.18-23.
  • [3] Garcia-Vergara S.J., El Khazmi K., Skeldon P., Thompson G.E.: Influence of copper on the morphology of porous anodic alumina. „Corrosion Science", 2006, 48, p. 2937-2946.
  • [4] Habazaki H., Zhou X., Shimizu K., Skeldon P., Thompson G.E., Wood G.C.: Mobility of copper ions in anodic alumina films. „Electrochimica Acta", 1997, 42(17), p. 2627-2635.
  • [5] Cote J., Howlett E.E., Wheeler M.J., Lamb H.J.: The behavior of intermetallic compounds in aluminum during sulfuric acid anodizing. „Plating", 1969, 56(4), p. 386-394.
  • [6] Saenz de Miera M., Curioni M., Skeldon P., Thomp¬son G.E.: Modelling the anodizing behaviour of aluminium alloys in sulphuric acid through alloy ana-logues. „Corrosion Science", 2008, 50, p. 3410-3415.
  • [7] Garcia-Vergara S.J., Khazmi K.El, Skeldon P., Thompson G.E.: Influence of copper on the morphology of porous anodic alumina. „Corrosion Science", 2006,48, p. 2937-2946.
  • [8] Kim H.S., Thompson G.E., Wood G.C., Wright l.G., Marringer R.E.: Electronooptical study of anodic film growth on rapidly solidified Al-Si based alloys. „Trans. Inst. Met. Finishing", 1984, 62(2), p. 49-54.
  • [9] Wang L., Nie X.: Silicon effects on formation of EPO oxide coatings on aluminium alloys. „Thin Solid Films", 2006, 494, p. 211-218.
  • [10] Konieczny J., Dobrzański L.A., Labisz K., Duszczyk J.: The influence of cast method and anodizing parameters on structure and layer thickness of aluminium alloys. „J. Mat. Processing Technology", 2004, 157-158, p. 718-723.
  • [11] Fratila-Apachitei L.E., Duszczyk J., Katgerman L.: Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H2SO4 at Iow temperatures. „Surface and Coatings Technology", 2002, 157, p. 80-94.
  • [12] Fratila-Apachitei L.E., Duszczyk J., Katgerman L.: Vickers micro-hardness of AlSi(Cu) anodic oxide layers formed in H2SO4 at Iow temperatures. „Surface and Coatings Technology", 2003, 165(3), p. 309-315.
  • [13] Fratila-Apachitei L.E., Tichelaar F.D., Thompson G.E., Terryn H., Skeldon P., Duszczyk J., Katgerman L.: A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys. „Electrochimica Acta", 2004, 49, p. 3169-3177.
  • [14] Fratila-Apachitei L.E., De Graeve l., Apachitei l., Terryn H., Duszczyk J.: Electrode temperature evolution during anodic oxidation of AlSi(Cu) alloys studied in wall-jet reactor. „Surface and Coatings Technology", 2006, 200, p. 5343-5353.
  • [15] Fratila-Apachitei L.E., Duszczyk J., Katgerman L.: AlSi(Cu) anodic oxide layers formed in H2SO4 at Iow temperatures. „Surface and Coatings Technology", 2003, 165(3), p. 232-240.
  • [16] Labisz K., Dobrzański LA., Konieczny J.: Anodization of cast aluminium alloys produced by different casting methods. „Archives of Foundry Engineering", 2008, 8, Special Issue no 3, p. 45-50.
  • [17] Thompson G.E., Zhang L., C.J.E. Smith, Skeldon P.: Boric/Sulphuric acid anodizing of aluminium alloys 2024 and 7075; film growth and corrosion resis-tance. „Corrosion", 1999, 55(11), p.1052-1061.
  • [18] Spadafora J.S.: A comparison of sulphuric-boric acid anodize and chromie acid anodize processes. „Metal Finishing",1994, 4, p. 53-57.
  • [19] Zhang J., Zhao X., Zuo Y., Xiong J.: The bonding strength and corrosion resistance of aluminium alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath. „Surface & Coatings Technology", 2008, 202, p. 3149-3156.
  • [20] Critchlow G.W., Yendall K.A., Bahrani D., CJuinn A., Andrews F.; Strategies for the replacement of chromic acid anodizing for the structural bonding of aluminium alloys. Int. „J. of Adhesion & Adhesives", 2006,26, p. 419-453.
  • [21] Bockmair G.: Flying free. Non-chromate(VI) surface protection is nów possible for aircraft maintenance. „European Coating J.", 2009, 7, p. 46-50.
  • [22] Zhang J., Zhao X., Zuo Y., Xiong J.: The bonding strength and corrosion resistance of aluminium alloy by anodizing treatment in a phosphoric acid modified boric acid/sulphuric acid bath. „Surface & Coatings Technology", 2008, 202, p. 3149-3156.
  • [23] Saeedikhani M., Javidi M., Yazdani A.: Anodizing of 2024-T3 aluminium alloy in sulphuric-boric-phos-phoric acids and its corrosion behaviour. „Trans. Nonferrous Met. Soc." China, 2013, 23, 2551-2559.
  • [24] Rasmussen J., Bradford D.: Capability study of surface roughness ring groove anodizing of automotive pistons. „Metal Finishing", 2003, 5, p. 9-16.
  • [25] Rasmussen J.: New insights into the micro-hardness of anodized aluminium. „Metal Finishing", 2001, 9, p. 46-61.
  • [26] Rasmussen J.: Method for anodizing objects. US Patent no 7776198 (2010).
  • [27] Yamamoto T.: Anodic oxide film. US Patent no 7838120(2010).
  • [28] Rasmussen J.: Method and apparatus for anodizing objects US Patent no 6126808.
  • [29] Jiang Zh., Li Sh., Zeng J., Liao X., Yang D.: Analysis on the anodic oxide film on aluminium pistons formed in high current density and wide temperature range. „Advanced Materials Research", 2011, 189-193, p. 507-511.
  • [30] Wang Y., Tung S.C.: Scuffing and wear behaviour of aluminium piston skirt coatings against aluminium cylinder bore. „Wear", 1999, 225-229, p. 1100-1108.
  • [31] Rasmussen J.: New insights into the micro-hardness of anodized aluminium. „Metal Finishing", 2001, 9, p. 46-51.
  • [32] Li Y., Zheng M., Ma L., Shen W.:Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. „Nanotechnology", 2006, 17, p. 5101-5105.
  • [33] Li D., Jiang Ch., Jiang J., Ren X.: lnvestigation on highly ordered porous anodic alumina membranes formed by high electric field anodization. Materials Chemistry and Physics, 2008, 111, p. 168-171.
  • [34] Li X., Nie X., Wang L., Northwood D.O.: Corrosion protection properties of anodic oxide coatings on an Al-Si alloy. „Surface & Coatings Technology", 2005, 200, p.1994-2000.
  • [35] Ginder R.S., Hersam M.C., Lipson A.L: Unique pore-formation geometries in anodized aluminium oxide. „Nanoscape", 2010, 7(1), p. 48-51.
  • [36] Zaraska L., Sulka G. D., Jaskuła M.: The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminium in phosphoric acid. „Surface & Coatings Technology", 2010, 204, p. 1729-1737.
  • [37] Bensalah W., Elleuch K., Feki M., Depetris-Wery M., Ayedi H.F.: Optimization of tartaric/sulphuric acid anodizing process using Doehlert design. „Surface & Coatings Technology", 2012, 207, p.123-129.
  • [38] Garcia-Rubio M., Ocon P., Climent-Font A., Smith R.W., Cusioni M., Thompson G.E., Skeldon P., Lavia A., Garcia l.: Influence of molybdate species on the tartaric acid/sulphuric acid anodic films grown on AA2024 T3 aerospace alloy. „Corrosion Science", 2009,51, p. 2034-2042.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-149318ed-d400-4910-b0f1-96eea5216256
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.