PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Baseline groundwater monitoring for shale gas extraction: definition of baseline conditions and recommendations from a real site (Wysin, Northern Poland)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Public concerns have been raised regarding the use of hydraulic fracturing for shale gas extraction and its potential impact on the environment. The absence of baseline monitoring data in the US experience has been identified as a major issue. Here, results from a 6-month groundwater baseline monitoring study near an active shale gas pad in northern Poland are presented. The data collected in dedicated boreholes include groundwater samples analysed for inorganic constituents, dissolved gases and stables isotopes (δ2H and δ18O) and downhole temperature and conductivity measurements at 15-min intervals. A robust statistical analysis combined with an estimation of data uncertainty helps to identify spatial and temporal variability within the datasets. As a result, baseline conditions are defined using confidence intervals around the mean on a per-well basis and these will serve for future reference for this site. The groundwater chemical composition is similar to regional background levels and typical of Quaternary aquifers in the region. It is also consistent with previous baseline monitoring carried out by the Polish Geological Institute. Only manganese and bromide occur in groundwater at concentrations above Polish drinking water standards. Based on this work, the paper provides some recommendations for future baseline monitoring and identifies areas for future research such as use of statistics for high-frequency datasets.
Czasopismo
Rocznik
Strony
365--384
Opis fizyczny
Bibliogr. 71 poz.
Twórcy
  • School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
autor
  • School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
autor
  • RSKW, Stirling University Innovation Park, Stirling FK9 4NF, Scotland, UK
autor
  • RSKW, Stirling University Innovation Park, Stirling FK9 4NF, Scotland, UK
autor
  • School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
Bibliografia
  • 1. Bair ES, Freeman DC, Senko JM (2010) Subsurface gas invasion Bainbridge Township, Geauga County, Ohio. Ohio Department of Natural Resources, Columbus, OH. https://oilandgas.ohiodnr.gov/portals/oilgas/pdf/bainbridge/DMRM%200%20Title%20Page,%20Preface,%20Acknowledgements.pdf. Accessed Oct. 2017
  • 2. Bartels R (1982) The rank version of von Neumann’s ratio test for randomness. J Am Stat Assoc 77:40–46. https://doi.org/10.2307/2287767
  • 3. Bell RA, Darling WG, Ward RS, Basava-Reddi L, Halwa L, Manamsa K, Dochartaigh BEÓ (2017) A baseline survey of dissolved methane in aquifers of Great Britain. Sci Total Environ 601:1803–1813. https://doi.org/10.1016/j.scitotenv.2017.05.191
  • 4. Brownfield ME, Schenk CJ, Charpentier RR, Klett TR, Pitman JK, Tennyson ME, Gaswirth SB, Mercier TJ, Le PA, Leathers HM (2015) Assessment of undiscovered conventional and continuous oil and gas resources of the Baltic Depression Province. US Geological Survey. https://doi.org/10.3133/fs20153015. https://pubs.er.usgs.gov/publication/fs20153015. Accessed June 2018
  • 5. Cantoni R (2018) Second Galicia? Poland’s shale gas rush through historical lenses. Geol Soc Lond Spec Publ 465:SP465-416
  • 6. Chou CJ (2004) Groundwater monitoring: statistical methods for testing special background conditions. In: Wiersma GB (ed) Environmental monitoring. CRC Press, Bota Roca, pp 239–255
  • 7. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press LLC, Boca Raton
  • 8. Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703. https://doi.org/10.1126/science.133.3465.1702
  • 9. Darrah TH, Vengosh A, Jackson RB, Warner NR, Poreda RJ (2014) Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales. Proc Natl Acad Sci 111:14076–14081. https://doi.org/10.1073/pnas.1322107111
  • 10. Donnelly T, Waldron S, Tait A, Dougans J, Bearhop S (2001) Hydrogen isotope analysis of natural abundance and deuterium-enriched waters by reduction over chromium on-line to a dynamic dual inlet isotope-ratio mass spectrometer. Rapid Commun Mass Spectrom 15:1297–1303
  • 11. EC (1998) Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Communities 41:32–54
  • 12. EC (2018) Proposal for a directive of the European Parliament and of the Council on the quality of water intended for human consumption (recast). European Commission, Brussels, Belgium. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017PC0753&from=EN. Accessed May 2018
  • 13. EEA (2014) Interactive maps. European Environmental Agency. http://maps.eea.europa.eu/EEABasicviewer/v3/?appid=d649ddee9ee145559a650ac6edb714df&embed=true. Accessed Nov. 2018
  • 14. Global Network of Isotopes in Precipitation. The GNIP database (2016) http://www-naweb.iaea.org/napc/ih/index.html
  • 15. Gordalla BC, Ewers U, Frimmel FH (2013) Hydraulic fracturing: a toxicological threat for groundwater and drinking-water? Environ Earth Sci 70:3875–3893. https://doi.org/10.1007/s12665-013-2672-9
  • 16. Grøn C, Hansen JB, Magnusson B, Nordbotten A, Krysell M, Andersen KJ, Lund U (2007) Uncertainty from sampling—a NORDTEST handbook for sampling planners on sampling quality assurance and uncertainty estimation. Nordic Innovation Centre, Norway. http://demarcheiso17025.com/documents/Uncertainty%20from%20Sampling%20-%20NORDTEST%20Report%20-%20TR604.pdf. Accessed Dec 2017
  • 17. GT (2015) Dokumentacja geologiczna z wykonania 7 otworów badawczych w rejonie miejscowości Wysin i Stary Wiec [Geological documentation from drilling seven research boreholes in the region of Wysin and Stary Wiec]. Geofizyka Toruń, Toruń
  • 18. Gunning A, Isherwood C, Montcoudiol N, Kelly T (2017) D5.1 Hydrogeological models to assess the potential for groundwater impairment for a selected ‘shale analogue’ site. RSKW Ltd & University of Glasgow. http://www.sheerproject.eu/images/deliverables/SHEER-Deliverable-5.1.pdf. Accessed April 2018
  • 19. Harkness JS, Darrah TH, Warner NR, Whyte CJ, Moore MT, Millot R, Kloppmann W, Jackson RB, Vengosh A (2017) The geochemistry of naturally occurring methane and saline groundwater in an area of unconventional shale gas development. Geochim Cosmochim Acta 208:302–334. https://doi.org/10.1016/j.gca.2017.03.039
  • 20. Helsel D, Hirsch R (2002) Statistical methods in water resources. US Geological Survey. https://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3-new.pdf. Accessed June 2018
  • 21. Howarth RW, Ingraffea A, Engelder T (2011) Should fracking stop? Nature 477:271. https://doi.org/10.1038/477271a
  • 22. Humez P, Mayer B, Nightingale M, Ing J, Becker V, Jones D, Lam V (2016) An 8-year record of gas geochemistry and isotopic composition of methane during baseline sampling at a groundwater observation well in Alberta (Canada). Hydrogeol J 24:109–122
  • 23. Huw C, Leo E, Peter S, Peter T (2014) Felt seismicity associated with shale gas hydraulic fracturing: the first documented example in Europe. Geophys Res Lett 41:8308–8314. https://doi.org/10.1002/2014GL062047
  • 24. IAEA (2016) RCWIP (Regionalized cluster-based water isotope prediction) Model—gridded precipitation δ18O|δ2H| δ18O and δ2H isoscape data. International Atomic Energy Agency. http://www-naweb.iaea.org/napc/ih/index.html. Accessed Sept 2017
  • 25. Jackson RE, Heagle DJ (2016) Sampling domestic/farm wells for baseline groundwater quality and fugitive gas. Hydrogeol J 24:269–272. https://doi.org/10.1007/s10040-016-1369-z
  • 26. Jackson RB, Vengosh A, Darrah TH, Warner NR, Down A, Poreda RJ, Osborn SG, Zhao K, Karr JD (2013a) Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proc Natl Acad Sci 110:11250–11255. https://doi.org/10.1073/pnas.1221635110
  • 27. Jackson RE, Gorody AW, Mayer B, Roy JW, Ryan MC, Van Stempvoort DR (2013b) Groundwater protection and unconventional gas extraction: the critical need for field-based hydrogeological research. Groundwater 51:488–510
  • 28. Jaworska-Szulc B (2009) Groundwater flow modelling of multi-aquifer systems for regional resources evaluation: the Gdansk hydrogeological system, Poland. Hydrogeol J 17:1521–1542
  • 29. JCGM (2008) Evaluation of measurement data—guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology (BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML). https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. Accessed June 2018
  • 30. Kachnic J, Kachnic M (2010) Hydrodynamic and hydrochemical conditions in the Wda and Mątawa River catchments (NW Poland). Geol Q 50:447–456
  • 31. Kahrilas GA, Blotevogel J, Stewart PS, Borch T (2015) Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity. Environ Sci Technol 49:16–32. https://doi.org/10.1021/es503724k
  • 32. Konieczyńska M, Woźnicka M, Antolak O, Janica R, Lichtarski G, Nidental M, Otwinowski J, Starzycka A, Stec B, Wróbel G, Potrykus R, Gdaniec Rohde B, Włodarski T (2011) Environmental aspects of hydraulic fracturing treatment performed on the Łebień LE-2H well. Final report. Polish Geological Institute, National Reasearch Institute, Warsaw, Poland. https://www.pgi.gov.pl/en/dokumenty-pig-pib-all/kopalnia-wiedzy/gaz-lupkowy/786-the-lebien-report/file.html
  • 33. Konieczyńska M, Janica R, Fajfer J, Felter A, Frydel J, Głuszyński A, Gryczko-Gostyńska A, Jarosiński M, Kijewska S, Lichtarski G, Lipińska O, Pergół S, Podhalańska T, Roman M, Rosowiecka O, Stec B, Woźnicka M, Dzieniewicz M, Konopka E, Kotarba M, Lewkiewicz-Kołysa A, Macuda J, Nagy S, Sechman H, Bernaciak M, Grzelak W, Janicki W, Korkosz A, Kozak K, Kudłak B, Męcik M, Zabiegała B (2014) Określenie zakresu oddziaływania procesu poszukiwania i eksploatacji niekonwencjonalnych złóż węglowodorów na środowisko, z uwzględnieniem terminów poszczególnych prac, infrastruktury podziemnej i przesyłowej, a w szczególności określenia charakteru i zakresu oddziaływania [The environment and shale gas exploration—results of studies on the soil-water environment, ambient air, acoustic climate, process fluids and wastes]. Państwowy Instytut Geologiczny–Państwowy Instytut Badawczy, Akademia Górniczo-Hutnicza w Krakowie & Politechnika Gdańska [Polish Geological Institute–National Research Institute, AGH University of Science and Technology in Krakow & Gdańsk University of Technology], Warsaw, Poland
  • 34. Konieczyńska M, Adamczak-Biały T, Brodecki A, Brzezińska A, Janica R, Dziekan-Kamińska E, Fajfer J, Feldman-Olszewska A, Felter A, Frydel J, Głuszyński A, Gryczko-Gostyńska A, Jarosiński M, Joźwiak K, Kordalski Z, Kowalewski T, Kijewska S, Lichtarski G, Lidzbarski M, Lipińska O, Mikołajków J, Nidental M, Otwinowski J, Pasierowska B, Pergół S, Podhalańska T, Roman M, Rosowiecka O, Sobień K, Starzycka A, Stec B, Śliwiński Ł, Waksmundzka M, Woźnicka M, Dzieniewicz M, Guzy P, Izydor G, Konopka E, Kotarba M, Kowalski T, Lewkiewicz-Kołysa A, Macuda J, Nagy S, Sechman H, Bernaciak M, Grzelak W, Janicki W, Korkosz A, Kozak K, Kudłak B, Męcik M, Zabiegała B (2015) The environment and shale gas exploration—results of studies on the soil-water environment, ambient air, acoustic climate, process fluids and wastes. Directorate General for Environmental Protection, Warsaw, Poland. http://www.gdos.gov.pl/files/artykuly/38173/The_environment_and_shale_gas_exploration_RESULTS_OF_STUDIES_ON_THE_SOIL_WATER_ENVIRONMENT_AMBIENT_AIR_ACOUSTIC_CLIMATE_PROCESS_FLUIDS_AND_WASTES.pdf. Accessed Nov 2017
  • 35. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. https://doi.org/10.1080/01621459.1952.10483441
  • 36. Lefebvre R (2017) Mechanisms leading to potential impacts of shale gas development on groundwater quality. Wiley Interdiscip Rev Water 4:e1188. https://doi.org/10.1002/wat2.1188
  • 37. Levene H (1961) Robust tests for equality of variances. In: Olkin I, Ghurye SG, Hoeffding W, Madow WG, Mann HB (eds) Contributions to probability and statistics: essays in honor of Harold Hotelling. Stanford University Press, Palo Alto, pp 279–292
  • 38. López-Comino JA, Cesca S, Jarosławski J, Montcoudiol N, Heimann S, Dahm T, Lasocki S, Gunning A, Capuano P, Ellsworth WL (2018) Induced seismicity response of hydraulic fracturing: results of a multidisciplinary monitoring at the Wysin site, Poland. Sci Rep 8:8653. https://doi.org/10.1038/s41598-018-26970-9
  • 39. Luek JL, Gonsior M (2017) Organic compounds in hydraulic fracturing fluids and wastewaters: a review. Water Res 123:536–548. https://doi.org/10.1016/j.watres.2017.07.012
  • 40. Mair R, Bickle M, Goodman D, Koppelman B, Roberts J, Selley R, Shipton Z, Thomas H, Walker A, Woods E, Younger PL (2012) Shale gas extraction in the UK: a review of hydraulic fracturing. Royal Society and Royal Academy of Engineering, London, UK. https://www.raeng.org.uk/publications/reports/shale-gas-extraction-in-the-uk. Accessed June 2018
  • 41. Makos M (2014) Activities of PGNiG in exploration of unconventional hydrocarbon resources in Poland. Institute of Geological Sciences of Polish Academy of Sciences (ING PAN), Warsaw, Poland. http://www.ing.pan.pl/Atlab/Presentations/Sci_4_Ind_2014/Presentations/06_presentation_PGNiG.pdf. Accessed May 2018
  • 42. Montcoudiol N, Banks D, Isherwood C, Gunning A (2018) D5.2 Impact of well construction and fracture stimulation on baseline hydrogeological conditions and on drinking water aquifers. University of Glasgow & RSKW Ltd. https://doi.org/10.1016/j.egypro.2017.08.083 Accessed May 2018
  • 43. Moritz A, Hélie J-F, Pinti DL, Larocque M, Barnetche D, Retailleau S, Lefebvre R, Gélinas Y (2015) Methane baseline concentrations and sources in shallow aquifers from the shale gas-prone region of the St. Lawrence Lowlands (Quebec, Canada). Environ Sci Technol 49:4765–4771. https://doi.org/10.1021/acs.est.5b00443
  • 44. Nelson ST (2000) A simple, practical methodology for routine VSMOW/SLAP normalization of water samples analyzed by continuous flow methods. Rapid Commun Mass Spectrometry 14:1044–1046. https://doi.org/10.1002/1097-0231(20000630)14:12%3c1044:AID-RCM987%3e3.0.CO;2-3
  • 45. OGI (n.d.) Environmental impact of the exploration and recognition of the crude oil and natural gas deposits in the concession area 1/2011/p STARA KISZEWA [in Polish]. Oil and Gas Institute, Krakow, Poland
  • 46. PGI-NRI (2012) Assessment of shale gas and shale oil resources of the Lower Paleozoic Baltic-Podlasie-Lublin Basin in Poland. Polish Geological Institute–National Research Institute, Warsaw, Poland. https://www.pgi.gov.pl/en/dokumenty-pig-pib-all/aktualnosci-2012/zasoby-gazu/769-raport-en/file.html. Accessed May 2018
  • 47. Pólya G (1920) Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem [On the central limit theorem of probability calculation and the problem of moments]. Math Z 8:171–181. https://doi.org/10.1007/BF01206525
  • 48. Pruszkowska M, Malina G (2008) Hydrogeochemistry and vulnerability of groundwater in the moraine upland aquifers of the Gdańsk region (Northern Poland). Geol Q 52:291–300
  • 49. Pyssa J (2017) The influence of shale gas mining activities on the natural environment in Poland. In: Energy, environment and material systems (EEMS), Polanica Zdrój, Poland, 13–15 Sept. 2017. E3S Web of Conferences. EDP Sciences. https://doi.org/10.1051/e3sconf/20171902024
  • 50. Raidla V, Kern Z, Pärn J, Babre A, Erg K, Ivask J, Kalvāns A, Kohán B, Lelgus M, Martma T, Mokrik R, Popovs K, Vaikmäe R (2016) A δ18O isoscape for the shallow groundwater in the Baltic Artesian Basin. J Hydrol 542:254–267. https://doi.org/10.1016/j.jhydrol.2016.09.004
  • 51. Ramsey MH, Ellison SLR (eds) (2007) Measurement uncertainty arising from sampling: a guide to methods and approaches. Eurachem/EUROLAB/CITAC/Nordtest/AMC Guide
  • 52. Rhodes AL, Horton NJ (2015) Establishing baseline water quality for household wells within the Marcellus Shale gas region, Susquehanna County, Pennsylvania, U.S.A. Appl Geochem 60:14–28. https://doi.org/10.1016/j.apgeochem.2015.03.004
  • 53. Sadurski A (1986) Hydrogeological evolution of the upper cretaceous artesian basin of the Gdansk region. Ann Soc Geol Pol 56:143–161
  • 54. Schloemer S, Elbracht J, Blumenberg M, Illing CJ (2016) Distribution and origin of dissolved methane, ethane and propane in shallow groundwater of Lower Saxony, Germany. Appl Geochem 67:118–132. https://doi.org/10.1016/j.apgeochem.2016.02.005
  • 55. Schnoor JL (2012) Shale gas and hydrofracturing. Environ Sci Technol 46:4686. https://doi.org/10.1021/es3011767
  • 56. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611. https://doi.org/10.1093/biomet/52.3-4.591
  • 57. Siegel DI, Smith B, Perry E, Bothun R, Hollingsworth M (2015) Pre-drilling water-quality data of groundwater prior to shale gas drilling in the Appalachian Basin: analysis of the Chesapeake Energy Corporation dataset. Appl Geochem 63:37–57. https://doi.org/10.1016/j.apgeochem.2015.06.013
  • 58. Sloto RA (2014) Baseline groundwater quality from 34 wells in Wayne County, Pennsylvania, 2011 and 2013. Reston, VA. https://doi.org/10.3133/ofr20141116. http://pubs.er.usgs.gov/publication/ofr20141116
  • 59. Smedley PL, Ward RS, Allen G, Baptie BJ, Daraktchieva Z, Jones DG, Jordan CJ, Purvis RM, Cigna F (2015) Site selection strategy for environmental monitoring in connection with shale-gas exploration: Vale of Pickering, Yorkshire and Fylde, Lancashire. British Geological Survey, Keyworth, UK. http://nora.nerc.ac.uk/id/eprint/512628/
  • 60. Stiff HA Jr (1951) The interpretation of chemical water analysis by means of patterns. J Pet Technol 3:15–17. https://doi.org/10.2118/951376-G
  • 61. Stringfellow WT, Domen JK, Camarillo MK, Sandelin WL, Borglin S (2014) Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing. J Hazardous Mater 275:37–54. https://doi.org/10.1016/j.jhazmat.2014.04.040
  • 62. Terzer S, Wassenaar L, Araguás-Araguás L, Aggarwal P (2013) Global isoscapes for δ18O and δ2H in precipitation: improved prediction using regionalized climatic regression models. Hydrol Earth Syst Sci 17:4713–4728. https://doi.org/10.5194/hess-17-1-2013
  • 63. Tukey JW (1977) Exploratory data analysis. Addison-Wesley Series in behavioral science: quantitative methods. Addison-Wesley Publishing Company, Boston
  • 64. US EPA (2009) Statistical analysis of groundwater monitoring data at RCRA facilities: Unified guidance. U.S. Environmental Protection Agency. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P10055GQ.TXT. Accessed May 2018
  • 65. US EIA/ARI (2013) Technically recoverable shale oil and shale gas resources: an assessment of 137 shale formations in 41 countries outside the United States. US Energy Information Agency & Advanced Research Institute, Washington, USA. https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf. Accessed June 2018
  • 66. US EPA (2015) Retrospective case study in Killdeer, North Dakota—study of the potential impacts of hydraulic fracturing on drinking water resources. Office of Research and Development, Washington, DC. https://www.epa.gov/sites/production/files/2015-06/documents/killdeer_report_508_km_1.pdf. Accessed May 2018
  • 67. US EPA (2016) Hydraulic fracturing for oil and gas: Impacts from the hydraulic fracturing water cycle on drinking water resources in the United States. Office of Research and Development, Washington, DC. https://cfpub.epa.gov/ncea/hfstudy/recordisplay.cfm?deid=332990
  • 68. Vidic RD, Brantley SL, Vandenbossche JM, Yoxtheimer D, Abad JD (2013) Impact of shale gas development on regional water quality. Science. https://doi.org/10.1126/science.1235009
  • 69. Virbulis J, Bethers U, Saks T, Sennikovs J, Timuhins A (2013) Hydrogeological model of the Baltic Artesian Basin. Hydrogeol J 21:845–862
  • 70. Williams L, Macnaghten P, Davies R, Curtis S (2015) Framing ‘fracking’: Exploring public perceptions of hydraulic fracturing in the United Kingdom. Public understanding of science (Bristol, England). https://doi.org/10.1177/0963662515595159
  • 71. Witczak S, Bronders J, Kania J, Kmiecik E, Rozanski K, Szczepanska J (2006) Deliverable 16: summary guidance and recommendations on sampling, measuring and quality assurance. AGH - University of Science and Technology, Krakow, Poland. https://hydrologie.org/BIB/Publ_UNESCO/SOG_BRIDGE/Deliverables/WP3/D16.pdf. Accessed Dec. 2017
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1491fb51-302b-4ea9-bdae-d94be2f452a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.