PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation of a new device for photoplethysmographic measurement of multi-site arterial pulse wave velocity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pulse wave velocity (PWV) is commonly used for assessing arterial stiffness and it is a useful and accurate cardiovascular mortality predictor. Currently, many techniques and devices for PWV measurement are known, but they are usually expensive and require operator experience. One possible solution for PWV measurement is photoplethysmography (PPG), which is convenient, inexpensive and provides continuous PWV results. The aim of this paper is validation of a new device for PPG sensor-based measurement of multisite arterial PWV using a SphygmoCor XCEL (as the reference device) according to the recommendations of the Artery Society Guidelines (ASG). In this study, 108 subjects (56 men and 52 women, 20–91 years in 3 required age groups) were enrolled. The multi-site PWV was simultaneous measured by 7 PPG sensors commonly used in pulse oximetry in clinical settings. These sensors were placed on the forehead, and right and left earlobes, fingers and toes. Pulse transit time (PTT) was measured offline as the difference of time delay between two onsets of the pulse wave determined by the intersecting tangent method. The PWV was calculated by dividing the distance between PPG sensors by PTT. During PPG signals measurement, reference carotid to femoral PWV (cfPWV) was performed with a SphygmoCor XCEL system. The Pearson correlation coefficient (r) between the obtained PWV results was calculated. The Bland-Altman method was used to establish the level of agreement between the two devices. Mean difference (md) and standard deviation (SD) were also calculated. The multi-site PWV was highly correlated with accuracy at the ASG-defined level of ‘‘Acceptable” (md < 1.0 m/s and SD ≤ 1.5 m/s) with cfPWV: forehead - right toe (r = 0.75, md = 0.20, SD = 0.97), forehead - left toe (r = 0.79, md = 0.18, SD = 0.91), right ear - right toe (r = 0.79, md = 0.11, SD = 0.96), left ear - left toe (r = 0.75, md = 0.43, SD = 0.99), right ear - left toe (r = 0.78, md = 0.40, SD = 0.93), left ear - right toe (r = 0.78, md = 0.11, SD = 0.96), right finger - right toe (r = 0.66, md = 0.95, SD = 1.29), left finger - lefttoe (r = 0.67, md = 0.68, SD = 1.35). This study showed that PWV measured with the multisite PPG system, in relation to the obtained numerical values, correlated very well with that measured using the commonly known applanation tonometry method. However, it should be noted, that the measured PWV concerns the central and muscular part of the arterial tree while the cfPWV is only for the central one. The best results were obtained when the proximal PPG sensor was placed on the head (ear or forehead) and the distal PPG sensor on the toe. PPG sensors can be placed in many sites at the same time, which provides greater freedom of their configuration. Multi-site photoplethysmography is an alternative method for PWV measurement and creates new possibilities for the diagnostics of cardiovascular diseases.
Twórcy
  • Faculty of Electronics, Military University of Technology, Warsaw, Poland
  • Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
  • Faculty of Electronics, Military University of Technology, Warsaw, Poland
  • Faculty of Electronics, Military University of Technology, Warsaw, Poland
  • Department of Gerontology Public Health and Didactics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
  • Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
  • Department of Gerontology Public Health and Didactics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland; Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • [1] Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2018 update: A Report from the American Heart Association. Circulation 2018;137(12): e67–e492. https://doi.org/10.1161/CIR.0000000000000558.
  • [2] Kaptoge S, Pennells L, De Bacquer D, Cooney MT, Kavousi M, Stevens G, et al. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health 2019;7(10):e1332–45. https://doi.org/10.1016/S2214-109X(19)30318-3.
  • [3] Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016;37(29):2315–81. https://doi.org/10.1093/eurheartj/ehw106.
  • [4] Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. London: Edward Arnold; 1990. p. 404–5.
  • [5] Kim JM, Kim SS, Kim IJ et al. Arterial stiffness is an independent predictor for risk of mortality in patients with type 2 diabetes mellitus: the REBOUND study. Cardiovasc Diabetol 19, 2020;143. https://doi.org/10.1186/s12933-020-01120-6.
  • [6] Tripepi G, Agharazii M, Pannier B, D’Arrigo G, Mallamaci F, Zoccali C, et al. Pulse wave velocity and prognosis in endstage kidney disease. Hypertension 2018;71(6):1126–32. https://doi.org/10.1161/HYPERTENSIONAHA.118.10930.
  • [7] Jannasz I, Sondej T, Obiala K, Targowski T, Dobrowolski A, Olszewski R. Artery stiffness assessed in elderly patients with heart failure and diabetes. Eur J Heart Fail. 2020. 22(Suppl. S1):2–415. https://doi.org/10.1002/ejhf.1963.
  • [8] Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a ‘‘set up” for vascular disease. Circulation 2003;107(1):139–46. https://doi.org/10.1161/01.cir.0000048892.83521.58.
  • [9] Laurent S, Katsahian S, Fassot C, Tropeano A-I, Gautier I, Laloux B, et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke 2003;34(5):1203–6. https://doi.org/10.1161/01.STR.0000065428.03209.64.
  • [10] Reiner Ž, Simental-Mendía LE, Ruscica M, Katsiki N, Banach M, Rasadi K, et al. Pulse wave velocity as a measure of arterial stiffness in patients with familial hypercholesterolemia: a systematic review and meta-analysis. Arch Med Sci 2019;15(6):1365–74. https://doi.org/10.5114/aoms.2019.89450.
  • [11] Sequí-Domínguez I, Cavero-Redondo I, Álvarez-Bueno C, Pozuelo-Carrascosa DP, Nuñez de Arenas-Arroyo S, Martínez-Vizcaíno V. Accuracy of pulse wave velocity predicting cardiovascular and all-cause mortality. a systematic review and meta-analysis. J Clin Med 2020;9(7):2080. https://doi.org/10.3390/jcm9072080.
  • [12] Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021-104. https://doi.org/10.1093/eurheartj/ehy339.
  • [13] Takahashi T, Tomiyama H, Aboyans V, Kumai K, Nakano H, Fujii M, et al. Association of pulse wave velocity and pressure wave reflection with the ankle-brachial pressure index in Japanese men not suffering from peripheral artery disease. Atherosclerosis 2021;317:29–35. https://doi.org/10.1016/j.atherosclerosis.2020.11.031.
  • [14] Badhwar S, Chandran DS, Jaryal AK, Narang R, Deepak KK. Regional arterial stiffness in central and peripheral arteries is differentially related to endothelial dysfunction assessed by brachial flow-mediated dilation in metabolic syndrome. Diab Vasc Dis Res 2018;15(2):106–13. https://doi.org/10.1177/1479164117748840.
  • [15] Segers P, Rietzschel ER, Chirinos JA. How to measure arterial stiffness in humans. Arterioscler Thromb Vasc Biol 2020;40(5):1034–43. https://doi.org/10.1161/ATVBAHA.119.313132.
  • [16] Ring M, Eriksson MJ, Zierath JR, Caidahl K. Arterial stiffness estimation in healthy subjects: a validation of oscillometric (Arteriograph) and tonometric (SphygmoCor) techniques. Hypertens Res 2014;37(11):999–1007. https://doi.org/10.1038/hr.2014.115.
  • [17] Rajzer MW, Wojciechowska W, Klocek M, Palka I, Brzozowska-Kiszka M, Kawecka-Jaszcz K. Comparison of aortic pulse wave velocity measured by three techniques: Complior SphygmoCor and Arteriograph. J Hypertens 2008;26(10):2001–7. https://doi.org/10.1097/hjh.0b013e32830a4a25.
  • [18] Heidari Pahlavian S, Cen SY, Bi X, Wang DJJ, Chui HC, Yan L. Assessment of carotid stiffness by measuring carotid pulse wave velocity using a single-slice oblique-sagittal phase-contrast MRI. Magn Reson Med 2021;86(1):442–55. https://doi.org/10.1002/mrm.v86.110.1002/mrm.28677.
  • [19] Yin L-X, Ma C-Y, Wang S, Wang Y-H, Meng P-P, Pan X-F, et al. Reference values of carotid ultrafast pulse-wave velocity: a prospective, multicenter, population-based study. J Am Soc Echocardiogr 2021;34(6):629–41. https://doi.org/10.1016/j.echo.2021.01.003.
  • [20] Podgórski M, Grzelak P, Kaczmarska M, Polguj M, Łukaszewski M, Stefańczyk L. Feasibility of two-dimensional speckle tracking in evaluation of arterial stiffness: Comparison with pulse wave velocity and conventional sonographic markers of atherosclerosis. Vascular 2018;26(1):63–9. https://doi.org/10.1177/1708538117720047.
  • [21] Bogatu LI, Turco S, Mischi M, Woerlee P, Bouwman A, Korsten EHHM, et al. A modelling framework for assessment of arterial compliance by fusion of oscillometry and pulse wave velocity information. Comput Methods Programs Biomed 2020;196:105492. https://doi.org/10.1016/j.cmpb.2020.105492.
  • [22] Saugel B, Kouz K, Scheeren TWL, Greiwe G, Hoppe P, Romagnoli S, et al. Cardiac output estimation using pulse wave analysis-physiology, algorithms, and technologies: a narrative review. Br J Anaesth 2021;126(1):67–76. https://doi.org/10.1016/j.bja.2020.09.049.
  • [23] Bikia V, Stergiopulos N, Rovas G, Pagoulatou S, Papaioannou TG. The impact of heart rate on pulse wave velocity: an insilico evaluation. J Hypertens 2020;38(12):2451–8. https://doi.org/10.1097/HJH.0000000000002583.
  • [24] Sang T, Lv N, Dang A, Cheng N, Zhang W. Brachial-ankle pulse wave velocity and prognosis in patients with atherosclerotic cardiovascular disease: a systematic review and meta-analysis. Hypertens Res 2021;44(9):1175–85. https://doi.org/10.1038/s41440-021-00678-2.
  • [25] Kwak S, Kim H-L, In M, Lim W-H, Seo J-B, Kim S-H, et al. Associations of Brachial-Ankle Pulse Wave Velocity With Left Ventricular Geometry and Diastolic Function in Untreated Hypertensive Patients. Front Cardiovasc Med 2021;8. https://doi.org/10.3389/fcvm.2021.64749110.3389/fcvm.2021.647491.s001.
  • [26] Nolde JM, Lugo-Gavidia LM, Kannenkeril D, Chan J, Matthews VB, Carnagarin R, Azzam O, Kiuchi MG, Schlaich MP. Increased pulse wave velocity in patients with an orthostatic blood pressure rise independent of other cardiovascular risk factors. J Hypertens. 2021;39(7):1352-1360. https://doi.org/10.1097/HJH.0000000000002787.
  • [27] Zhang X, Bai R, Zou L, Zong J, Qin Y, Wang Y, et al. Brachialankle pulse wave velocity as a novel modality for detecting early diabetic nephropathy in type 2 diabetes patients. J Diabetes Res 2021;2021:1–7. https://doi.org/10.1155/2021/8862573.
  • [28] Sang Y, Mao K-M, Huang Yi, Wu X-F, Wang X-F, Ruan L, et al. Relationship between the plasma fibulin-1 levels, pulse wave velocity, and vascular age in asymptomatic hyperuricemia. Curr Med Sci 2021;41(1):94–9. https://doi.org/10.1007/s11596-021-2324-3.
  • [29] Jia B, Jiang C, Song Y, Duan C, Liu L, Liu C, Xu X, Qin X, Chen G. Association between white blood cell counts and brachial-ankle pulse wave velocity in Chinese hypertensive adults: A cross-sectional study. Angiology. 2021:33197211021199. https://doi.org/10.1177/00033197211021199.
  • [30] Stone K, Fryer S, Faulkner J, Meyer ML, Zieff G, Paterson C, et al. Acute changes in carotid-femoral pulse-wave velocity are tracked by heart-femoral pulse-wave velocity. Front Cardiovasc Med 2021;7. https://doi.org/10.3389/fcvm.2020.59283410.3389/fcvm.2020.592834.s001.
  • [31] Varga A, Zah T, Suciu CF, Petra DN, Buicu CF. Neutrophil-tolymphocyte ratio and pulse wave velocity in patients with controlled systemic hypertension — a preliminary report. Arterial Hypertension 2020;24(2):67–73. https://doi.org/10.5603/AH.a2020.0008.
  • [32] Cividjian A, Harbaoui B, Chambonnet C, Bonnet J-M, Paquet C, Courand P-Y, et al. Comprehensive assessment of coronary pulse wave velocity in anesthetized pigs. Physiol Rep 2020;8(9). https://doi.org/10.14814/phy2.14424.
  • [33] Pedro Henrique de Brito Souza, Israel Machado Brito Souza, Symone Gomes Soares Alcala´ , et al. Video-based photoplethysmography and machine learning algorithms to achieve pulse wave velocity. Int J Biotech Trends Technol. 2021;11(1):7-15. https://doi.org/10.14445/22490183/IJBTTV11I1P602.
  • [34] Jin W, Chowienczyk P, Alastruey J, Milan A. Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms. PLoS ONE 2021;16(6):e0245026. https://doi.org/10.1371/journal.pone.0245026.
  • [35] Bikia V, Rovas G, Pagoulatou S, Stergiopulos N. Determination of aortic characteristic impedance and total arterial compliance from regional pulse wave velocities using machine learning: an in-silico study. Front Bioeng Biotechnol 2021;9. https://doi.org/10.3389/fbioe.2021.649866649866.
  • [36] Nabeel PM, Kiran VR, Joseph J, Abhidev VV, Sivaprakasam M. Local pulse wave velocity: theory, methods, advancements, and clinical applications. IEEE Rev Biomed Eng 2020;13:74–112. https://doi.org/10.1109/RBME.2019.2931587.
  • [37] Milan A, Zocaro G, Leone D, et al. Current assessment of pulse wave velocity: comprehensive review of validation studies. J Hypertens. 2019;37(8):1547-57. https://doi.org/10.1097/hjh.0000000000002081.
  • [38] Pereira T, Correia C, Cardoso J. Novel methods for pulse wave velocity measurement. J Med Biol Eng 2015;35(5):555–65. https://doi.org/10.1007/s40846-015-0086-8.
  • [39] Boutouyrie P, Briet M, Collin C, Vermeersch S, Pannier B. Assessment of pulse wave velocity. Artery Res 2009;3(1):3–8. https://doi.org/10.1016/j.artres.2008.11.002.
  • [40] Ushakov NA, Markvart AA, Liokumovich LB. Pulse wave velocity measurement with multiplexed fiber optic Fabry-Perot interferometric sensors. IEEE Sens J 2020;20(19):11302–12. https://doi.org/10.1109/JSEN.2020.2997465.
  • [41] Xu S-K, Hong X-F, Cheng Y-B, Liu C-Y, Li Y, Yin B, et al. Validation of a piezoelectric sensor array-based device for measurement of carotid-femoral pulse wave velocity: the Philips prototype. Pulse 2018;5(1-4):161–8. https://doi.org/10.1159/000486317.
  • [42] Nam DH, Lee WB, Hong YS, Lee SS. Measurement of spatial pulse wave velocity by using a clip-type pulsimeter equipped with a Hall sensor and photoplethysmography. Sensors (Basel) 2013;13(4):4714–23. https://doi.org/10.3390/s130404714.
  • [43] P.M. N, Joseph J, Sivaprakasam M. A magnetic plethysmograph probe for local pulse wave velocity measurement. IEEE Trans Biomed Circuits Syst 2017;11(5):1065–76. https://doi.org/10.1109/TBCAS.2017.2733622.
  • [44] Sun Yu, Dong Y, Gao R, Chu Y, Zhang M, Qian X, et al. Wearable pulse wave monitoring system based on MEMS sensors. Micromachines (Basel) 2018;9(2):90. https://doi.org/10.3390/mi9020090.
  • [45] Nguyen TV, Ichiki M. MEMS-based sensor for simultaneous measurement of pulse wave and respiration rate. Sensors 2019;19(22):4942. https://doi.org/10.3390/s19224942.
  • [46] Buraioli I, Lena D, Sanginario A, Leone D, Mingrone G, Milan A, et al. A new noninvasive system for clinical pulse wave velocity assessment: the Athos device. IEEE Trans Biomed Circuits Syst 2021;15(1):133–42. https://doi.org/10.1109/TBCAS.2021.3058010.
  • [47] Solà J, Chételat O, Sartori C, Allemann Y, Rimoldi SF. Chest pulse-wave velocity: a novel approach to assess arterial stiffness. IEEE Trans Biomed Eng 2011;58(1):215–23. https://doi.org/10.1109/tbme.2010.2071385.
  • [48] Sánchez Bacaicoa C, Rico-Martín S, Morales E, Guimarães Cunha P, Rodilla E, Lozano J, et al. Brachial-ankle pulse wave velocity with a custom device. Rev Clin Esp (Barc) 2021;221(3):145–50. https://doi.org/10.1016/j.rceng.2019.12.008.
  • [49] Fontecave-Jallon J, Tanguy S. Inductive plethysmography for aortic pulse wave velocity. Annu Int Conf IEEE Eng Med Biol Soc 2020;2020:2711–4. https://doi.org/10.1109/EMBC44109.2020.9175329.
  • [50] Li Y, Marais L, Khettab H, Quan Z, Aasmul S, Leinders R, et al. Silicon photonics-based laser Doppler vibrometer array for carotid-femoral pulse wave velocity (PWV) measurement. Biomed Opt Express 2020;11(7):3913. https://doi.org/10.1364/BOE.394921.
  • [51] Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 2007;28(3): R1–R39. https://doi.org/10.1088/0967-3334/28/3/r01.
  • [52] Elgendi M, Fletcher R, Liang Y, Howard N, Lovell NH, Abbott D, et al. The use of photoplethysmography for assessing hypertension. NPJ Digit Med 2019;2(1). https://doi.org/10.1038/s41746-019-0136-7.
  • [53] Allen J. Quantifying the delays between multi-site photoplethysmography pulse and electrocardiogram R-R interval changes under slow-paced breathing. Front Physiol 2019;25(10):1190. https://doi.org/10.3389/fphys.2019.01190.
  • [54] Bentham M, Stansby G, Allen J. Innovative multi-site photoplethysmography analysis for quantifying pulse amplitude and timing variability characteristics in peripheral arterial disease. Diseases 2018;6(3):81. https://doi.org/10.3390/diseases6030081.
  • [55] Alivon M, Vo-Duc Phuong T, Vignon V, Bozec E, Khettab H, Hanon O, et al. A novel device for measuring arterial stiffness using finger-toe pulse wave velocity: Validation study of the pOpmètre®. Arch Cardiovasc Dis 2015;108(4):227–34. https://doi.org/10.1016/j.acvd.2014.12.003.
  • [56] Tsai W, Chen J, Wang M, Wu H, Chi C, Chen Y, et al. Association of risk factors with increased pulse wave velocity detected by a novel method using dual-channel photoplethysmography. Am J Hypertens 2005;18(8):1118–22. https://doi.org/10.1016/j.amjhyper.2005.03.739.
  • [57] Nabeel PM, Karthik S, Joseph J, Sivaprakasam M. Arterial blood pressure estimation from local pulse wave velocity using dual-element photoplethysmograph probe. IEEE Trans Instrum Meas 2018;67(6):1399–408. https://doi.org/10.1109/TIM.2018.2800539.
  • [58] Matheus P Neves, Antonio Porto W Jr., Pedro H Souza, Talles M Barbosa. A photoplethysmographic monitor for local pulse wave velocity measurement. Int J Comput Appl 177(31):62-67, 2020, https://doi.org/10.5120/ijca2020919811.
  • [59] Li K, Warren S. Initial study on pulse wave velocity acquired from one hand using two synchronized wireless reflectance pulse oximeters. Annu Int Conf IEEE Eng Med Biol Soc 2011;6907-10. https://doi.org/10.1109/iembs.2011.6091739.
  • [60] van Velzen MHN, Niehof SP, Mik EG, Loeve AJ. Measuring pulse wave velocity with a novel, simple sensor on the finger tip: A feasibility study in healthy volunteers. Biomed Phys Eng Express 2019;5(6):065010. https://doi.org/10.1088/2057-1976/ab3ad8.
  • [61] Loukogeorgakis S, Dawson R, Phillips N, Martyn CN, Greenwald SE. Validation of a device to measure arterial pulse wave velocity by a photoplethysmographic method. Physiol Meas 2002;23(3):581–96. https://doi.org/10.1088/0967-3334/23/3/309.
  • [62] Bereksi-Reguid MA, Bereksi-Reguig F, Nait-Ali A. A new system for measurement of the pulse transit time, the pulse wave velocity and its analysis. J Mech Med Biol 2017;17(1):1750010. https://doi.org/10.1142/S0219519417500105.
  • [63] Siva kumar AV, Mahesh Kumar K, Maruthy KN, Padmavathi R. Comparision of photo pulse plethysmography module with Mobil-O-graph for measurement of pulse wave velocity. Clin Epidemiol Glob Health 2021;9:216–20. https://doi.org/10.1016/j.cegh.2020.09.001.
  • [64] Beutel F, Van Hoof C, Rottenberg X, Reesink K, Hermeling E. Pulse arrival time segmentation into cardiac and vascular intervals - implications for pulse wave velocity and blood pressure estimation. IEEE Trans Biomed Eng 2021;68(9):2810–20. https://doi.org/10.1109/TBME.2021.3055154.
  • [65] Olszewski R, Sondej T, Sieczkowski K, Obiala K, Jannasz I, Targowski T, Dobrowolski AP. Validating a new device for precise assessment of pulse wave velocity in arteries of various structures in patients in different age groups. Eur Heart J 2019; 40(Issue Supplement_1):ehz748.0284. https://doi.org/10.1093/eurheartj/ehz748.0284.
  • [66] Sondej T, Sieczkowski K, Olszewski R, Dobrowolski A. Simultaneous multi-site measurement system for the assessment of pulse wave delays. Biocybern Biomed Eng 2019;39(2):488–502. https://doi.org/10.1016/j.bbe.2019.01.001.
  • [67] Wilkinson IB, McEniery CM, Schillaci G, Boutouyrie P, Segers P, Donald A, et al. ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: part 1, arterial pulse wave velocity. Artery Res 2010;4(2):34. https://doi.org/10.1016/j.artres.2010.03.001.
  • [68] Butlin M, Qasem A, Battista F, Bozec E, McEniery CM, Millet-Amaury E, et al: Carotid-femoral pulse wave velocity assessment using novel cuff-based techniques: comparison with tonometric measurement. J Hypertens. 2013;31:2237-43, https://doi.org/10.1097/hjh.0b013e328363c789.
  • [69] Cai TY, Meroni A, Dissanayake H, Phang M, Avolio A, Celermajer DS, et al. Validation of a cuff-based device for measuring carotid-femoral pulse wave velocity in children and adolescents. J Hum Hypertens 2020;34(4):311–8. https://doi.org/10.1038/s41371-019-0191-1.
  • [70] Butlin M, Qasem A. Large artery stiffness assessment using SphygmoCor technology. Pulse 2016;4:180–92. https://doi.org/10.1159/000452448.
  • [71] Sugawara J, Hayashi K, Yokoi T, Tanaka H. Carotid–femoral pulse wave velocity: Impact of different arterial path length measurements. Artery Res 2010;4(1):27–31. https://doi.org/10.1016/j.artres.2009.11.001.
  • [72] Vermeersch SJ, Rietzschel ER, De Buyzere ML, Van Bortel LM, Gillebert TC, Verdonck PR, Laurent S, Segers P, Boutouyrie P. Distance measurements for the assessment of carotid to femoral pulse wave velocity, J Hypertens 2009;27(12):2377-85. https://doi.org/10.1097/hjh.0b013e3283313a8a.
  • [73] Liu J, Yan BP, Dai WX, Ding XR, Zhang YT, Zhao N. Multi-wavelength photoplethysmography method for skin arterial pulse extraction. Biomed Opt Express 2016;7(10):4313–26. https://doi.org/10.1364/boe.7.004313.
  • [74] Liang Y, Elgendi M, Chen Z, Ward R. An optimal filter for short photoplethysmogram signals. Sci Data 2018;1(5). https://doi.org/10.1038/sdata.2018.76 180076.
  • [75] Hermeling E, Reesink KD, Reneman RS, Hoeks AP. Measurement of local pulse wave velocity: effects of signal processing on precision. Ultrasound Med Biol 2007;33(5):774–81. https://doi.org/10.1016/j.ultrasmedbio.2006.11.018.
  • [76] Ludbrook J. Confidence in Altman-Bland plots: a critical review of the method of differences. Clin Exp Pharmacol Physiol 2010;37(2):143–9. https://doi.org/10.1111/j.1440-1681.2009.05288.x.
  • [77] Hickson SS, Butlin M, Broad J, Avolio AP, Wilkinson IB, McEniery CM. Validity and repeatability of the Vicorder apparatus: a comparison with the SphygmoCor device. Hypertens Res 2009;32(12):1079–85. https://doi.org/10.1038/hr.2009.154.
  • [78] Luzardo L, Lujambio I, Sottolano M, da Rosa A, Thijs L, Noboa O, et al. 24-h ambulatory recording of aortic pulse wave velocity and central systolic augmentation: a feasibility study. Hypertens Res 2012;35(10):980–7. https://doi.org/10.1038/hr.2012.78.
  • [79] Stea F, Bozec E, Millasseau S, Khettab H, Boutouyrie P, Laurent S. Comparison of the Complior Analyse device with Sphygmocor and Complior SP for pulse wave velocity and central pressure assessment. J Hypertens 2014;32(4):873–80. https://doi.org/10.1097/hjh.0000000000000091.
  • [80] Morales MS, Cuffaro PE, Barochiner J, Rada MA, Alfie J, Aparicio L, et al. Validation of a new piezo-electronic device for non-invasive measurement of arterial pulse wave velocity according to the artery society guidelines. Artery Res 2015;10(C):32. https://doi.org/10.1016/j.artres.2015.03.001.
  • [81] Clarenbach CF, Stoewhas A-C, van Gestel AJR, Latshang TD, Lo Cascio CM, Bloch KE, et al. Comparison of photoplethysmographic and arterial tonometry-derived indices of arterial stiffness. Hypertens Res 2012;35(2):228–33. https://doi.org/10.1038/hr.2011.168.
  • [82] von Wowern E, Östling G, Nilsson PM, Olofsson P. Digital photoplethysmography for assessment of arterial stiffness: repeatability and comparison with applanation tonometry. PLoS One. 2015;10(8):e0135659. https://doi.org/10.1371/journal.pone.0135659.
  • [83] Simova I, Katova T, Santoro C, Galderisi M. Comparison between regional and local pulse-wave velocity data. Echocardiography 2016;33(1):77–81. https://doi.org/10.1111/echo.12985.
  • [84] Bia D, Zócalo Y. Physiological age- and sex-related profiles for local (aortic) and regional (carotid-femoral, carotidradial) pulse wave velocity and center-to-periphery stiffness gradient, with and without blood pressure adjustments: reference intervals and agreement between methods in healthy subjects (3–84 years). J Cardiovasc Dev Dis 2021;8(1):3. https://doi.org/10.3390/jcdd8010003.
  • [85] Styczynski G, Cienszkowska K, Ludwiczak M, Szmigielski C. Age-related values of aortic pulse wave velocity in healthy subjects measured by Doppler echocardiography. J Hum Hypertens 2021. https://doi.org/10.1038/s41371-020-00466-4.
  • [86] Huthart S, Elgendi M, Zheng D, Stansby G, Allen J. Advancing PPG signal quality and know-how through knowledge translation—from experts to student and researcher. Front Digit Health 2020;2. https://doi.org/10.3389/fdgth.2020.619692 619692.
  • [87] Sabeti E, Reamaroon N, Mathis M, Gryak J, Sjoding M, Najarian K. Signal quality measure for pulsatile physiological signals using morphological features: Applications in reliability measure for pulse oximetry. Inform Med Unlocked 2019;16:100222. https://doi.org/10.1016/j.imu.2019.100222.
  • [88] Bichali S, Bruel A, Boivin M, Roussey G, Romefort B, Rozé J-C, et al. Simplified pulse wave velocity measurement in children: Is the pOpmètre valid? PLoS ONE 2020;15(3): e0230817. https://doi.org/10.1371/journal.pone.0230817.
  • [89] Schwartz JE, Feig PU, Izzo Jr JL. Pulse wave velocities derived from cuff ambulatory pulse wave analysis: effects of age and systolic blood pressure. Hypertension 2019;74(1):111–6. https://doi.org/10.1161/HYPERTENSIONAHA.119.12756.
  • [90] Obeid H, Khettab H, Marais L, Hallab M, Laurent S, Boutouyrie P. Evaluation of arterial stiffness by finger-toe pulse wave velocity: optimization of signal processing and clinical validation. J Hypertens 2017;35(8):1618–25. https://doi.org/10.1097/hjh.0000000000001371.
  • [91] Accetto R, Salobir B, Brguljan J, Dolenc P. Comparison of two techniques for measuring pulse wave velocity and central blood pressure. Artery Res 2011;5(3):97. https://doi.org/10.1016/j.artres.2011.06.001.
  • [92] Shahin Y, Barakat H, Barnes R, Chetter I. The Vicorder devicecompared with SphygmoCor in the assessment of carotid-femoral pulse wave velocity in patients with peripheral arterial disease. Hypertens Res 2013;36(3):208–12. https://doi.org/10.1038/hr.2012.144.
  • [93] Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res 2019;42(9):1235–481. https://doi.org/10.1038/s41440-019-0284-9.
  • [94] Charlton PH, Mariscal Harana J, Vennin S, Li Y, Chowienczyk P, Alastruey J. Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. Am J Physiol Heart Circ Physiol 2019;317(5):H1062–85. https://doi.org/10.1152/ajpheart.00218.2019.
  • [95] Podolec M, Siniarski A, Pajaôk A, Rostoff P, Gajos G, Nessler J, et al. Association between carotid-femoral pulse wave velocity and overall cardiovascular risk score assessed by the SCORE system in urban Polish population. Kardiol Pol 2019;77(3):363–70. https://doi.org/10.5603/KP.a2019.0028.
  • [96] Kubalski P, Hering D. Repeatability and reproducibility of pulse wave velocity in relation to hemodynamics and sodium excretion in stable patients with hypertension. J Hypertens 2020;38(8):1531–40. https://doi.org/10.1097/hjh.0000000000002416.
  • [97] Szmigielski C, Styczyński G, Sobczyńska M, Milewska A, Placha G, Kuch-Wocial A. Pulse wave velocity correlates with aortic atherosclerosis assessed with transesophageal echocardiography. J Hum Hypertens 2016;30(2):90–4. https://doi.org/10.1038/jhh.2015.35.
  • [98] Piko N, Bevc S, Hojs R, Naji FH, Ekart R. The association between pulse wave analysis, carotid-femoral pulse wave velocity and peripheral arterial disease in patients with ischemic heart disease. BMC Cardiovasc Disord 2021;21(1). https://doi.org/10.1186/s12872-021-01859-0.
  • [99] Mueller N, Streis J, Müller S, Pavenstädt H, Felderhoff T, Reuter S, et al. Pulse Wave Analysis and Pulse Wave Velocity for Fistula Assessment. Kidney Blood Press Res 2020;45(4):576–88. https://doi.org/10.1159/000506741.
  • [100] Sugawara J, Tomoto T, Tanaka H. Heart-to-brachium pulse wave velocity as a measure of proximal aortic stiffness: MRI and longitudinal studies. Am J Hypertens 2019;32(2):146–54. https://doi.org/10.1093/ajh/hpy166.
  • [101] Björnfot C, Garpebring A, Qvarlander S, Malm J, Eklund A, Wåhlin A. Assessing cerebral arterial pulse wave velocity using 4D flow MRI. J Cereb Blood Flow Metab 2021;41(10):2769–77. https://doi.org/10.1177/0271678X211008744.
  • [102] Ma Y, Choi J, Hourlier-Fargette A, Xue Y, Chung HU, Lee JY, et al. Relation between blood pressure and pulse wave velocity for human arteries. Proc Natl Acad Sci USA 2018;115(44):11144–9. https://doi.org/10.1073/pnas.1814392115.
  • [103] Hill BL, Rakocz N, Rudas Á, Chiang JN, Wang S, Hofer I, et al. Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning. Sci Rep 2021;11(1). https://doi.org/10.1038/s41598-021-94913-y.
  • [104] Rode M, Teren A, Wirkner K, Horn K, Kirsten H, Loeffler M, et al. Genome-wide association analysis of pulse wave velocity traits provide new insights into the causal relationship between arterial stiffness and blood pressure. PLoS ONE 2020;15(8):e0237237. https://doi.org/10.1371/journal.pone.0237237.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14911d0b-bb8f-4347-b7dd-615ee9bb1c0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.