Identyfikatory
Warianty tytułu
The Influence of Cerium Oxide Nanoparticles on the Surface Activity of Pulmonary Surfactant
Języki publikacji
Abstrakty
In recent years there has been an intensive development of industries that use or produce materials in the nano scale. Nanomaterials contribute to the improvement of the product parameters, but when inhaled can also negatively affect the human body. The aim of the study was to investigate the effect of cerium oxide nanoparticles on the surface activity of pulmonary surfactant (PS) forming a thin film separating the inhaled air from the alveolar epithelium. Three types of cerium oxide powders were used (Sigma-Aldrich): C1 having a particle size smaller than 25 nm, C2 having a particle size smaller than 50 nm, and for comparison purposes C3 having a particle size smaller than 5 µm. Measurement of specific surface area was carried out using a Gemini 2360 surface area analyzer (Micromeritics, USA). The effect of cerium oxide nanoparticles on the surface activity of PS was studied using DeltaPi microtensiometer (Kibron Inc., Finland). Reconstituted animal surfactant preparation (Beractantum; Abbott Laboratories, France) recommended in states of deficiency of endogenous PS in newborn premature infants, was used as model PS. The tests were carried out at different particle concentrations (ranging up to 1 mg/ml) prepared with the constant concentration of the surfactant solution (1.25 mg phospholipids/ml). The study showed that in all the analyzed cases, the presence of cerium oxide particles caused an increase in surface pressure (lowering of the surface tension) at the liquid-air interface. It was found that the intensity of these changes depends on the particle size, specific surface area and the particle concentration. With the increase in concentrations of the particles in the model surfactant suspension, a greater difference in surface pressure/tension was observed with respect to the initial value. The largest increase in surface pressure (6.4 ± 1.1 mN/m) was observed in the presence of cerium oxide nanoparticles C1, which were characterized by the smallest dimensions (smaller than 25 nm) and the largest surface area (33.3 m2/g). The results show that cerium oxide nanoparticles may have an influence on the surface activity of pulmonary surfactant in vivo and adversely affect the functioning of the human respiratory system.
Wydawca
Czasopismo
Rocznik
Tom
Strony
146--157
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Centralny Instytut Ochrony Pracy-Państwowy Instytut Badawczy
autor
- Politechnika Warszawska
Bibliografia
- 1. Ahammed, N., Asirvatham, L.G., Wongwises, S. (2016). Effect of volume con- centration and temperature on viscosity and surface tension of graphene- water nanofluid for heat transfer applications. Journal of Thermal Analysis and Calorimetry, 123(2), 1399-1409.
- 2. Bakand, S., Hayes, A., Dechsakulthorn, F. (2012). Nanoparticles: a review of particle toxicology following inhalation exposure. Inhalation Toxicology, 24(2), 125-135.
- 3. Creutzenberg, O. (2012). Biological interactions and toxicity of nanomaterials in the respiratory tract and various approaches of aerosol generation for toxicity testing. Archives of Toxicology, 86(7), 1117-1122.
- 4. Geiser, M., Kreyling, W.G. (2010). Deposition and biokinetics of inhaled nanoparticles. Particle and Fibre Toxicology, 7:2.
- 5. Keating, E., Zuo, Y.Y., Tadayyon, S.M., Petersen, N.O., Possmayer, F., Veldhuizen, R.A.W. (2012). A modified squeeze-out mechanism for generating high surface pressure with pulmonary surfactant. Biochimica et Biophysica Acta, 1818, 1225-1234.
- 6. Khaleduzzaman, S.S., Mahbubul, I.M, Shahrul, I.M., Saidur, R. (2013). Effect of particle concentration, temperature and surfactant on surface tension of nanofluids. International Communications in Heat and Mass Transfer, 49,110-114.
- 7. Kondej, D., Sosnowski, T.R. (2013). Alteration of biophysical activity of pulmonary surfactant by aluminosilicate nanoparticles. Inhalation Toxicology,25(2), 77-83.
- 8. Kondej, D., Sosnowski, T.R. (2014). Physicochemical mechanisms of mineral nanoparticles effects on pulmonary gas/liquid interface studied in model systems. Physicochemical Problems of Mineral Processing, 50(1), 57-69.
- 9. Kondej, D., Sosnowski, T.R. (2016). Effect of clay nanoparticles on model lung surfactant: a potential marker of hazard from nanoaerosol inhalation. Environmental Science and Pollution Research, 23(5), 4660-4669.
- 10. Kumar, R., Milanova, D. (2009). Effect of surface tension on nanotube nanofluids. Applied Physics Letters, 94(7), 073107.
- 11. Marijnissen, J.C., Gradoń, L., Eds (2010). Nanoparticles in medicine and environment. Inhalation and health effects. Dordrecht: Springer.
- 12. Murshed, S.S., Tan, S.-H., Nguyen, N.-T. (2008). Temperature dependence of interfacial properties and viscisity of nanofluids for droplet-based microfluids. Journal of Physics D: Applied Physics, 41(8), 085502.
- 13. OECD (2012). Important issues on risk assessment of manufactured nano- materials. ENV/JM/MONO(2012)8.
- 14. Otis, D.R. Jr, Ingenito, E.P., Kamm, R.D., Johnson, M. (1994). Dynamic surface tension of surfactant TA: Experiments and theory. Journal of Applied Physiology, 77(6), 2681-2688.
- 15. Sosnowski, T.R. (2006). Efekty dynamiczne w układach ciecz-gaz z aktywną powierzchnią międzyfazową. Prace Wydziału Inżynierii Chemicznej i Procesowej Politechniki Warszawskiej, t.XXX, z.2. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
- 16. Sosnowski, T.R. (2012). Aerozole wziewne i inhalatory. Warszawa: WIChiP PW.
- 17. Tatur, S., Badia, A. (2012).Influence of hydrophobic alkylated gold nanoparticles on the phase behavior of monolayers of DPPC and clinical lung surfactant. Langmuir 28 (1), 628-639.
- 18. Tzortzaki, E.G., Vlachaki, E., Siafakas, N.M. (2007). Pulmonary surfactant. Pneumon, 20(4), 364-371.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-148e38ba-2687-4ce1-a4a5-d1987561928b