PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface Quality in Milling of AZ91D Magnesium Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is an attempt at determining the effect of technological parameters of milling on the surface roughness of the AZ91D magnesium alloy. The cutting tool used in tests was a TiAlN-coated carbide milling cutter. The milling tests were carried out at variable cutting speed, feed per tooth and depth of cut, and the results were compared. The analysis was based on the 2D roughness parameters measured on the end and lateral faces of specimens, as well as on the 3D roughness parameters measured on the end faces of specimens. The test results indicated that the increase in the feed per tooth results in the increase in the value of 2D and 3D surface roughness parameters. It was found that cutting speed and axial depth of cut have a negligible effect on the 2D roughness of the workpiece surface, whereas the increase in cutting speed results in the reduction of the 3D surface roughness parameters.
Twórcy
  • Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
  • Student of Mechanical Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Alharti N.H., Bingol S., Abbas A.T., Ragab A.E., El-Danaf E.A., Alharbi H.F.: Optimizing Cutting Conditions and Prediction of Surface Roughness in Face Milling of AZ61 Using Regression Analysis and Artificial Neural Network, Advances in Materials Science and Engineering, Vol. 2017, 2017, 1–8.
  • 2. Guo Y.B., Salahshoor M.: Process mechanics and surface integrity by high-speed dry milling of biodegradable magnesium–calcium implant alloys, CIRP Annals – Manufacturing Technology, 59, 2010, 151–154.
  • 3. Grzesik W.: Surface Topography and Utilitarian Characteristics of Machine Parts, Mechanik 8–9, 2015, 587–593.
  • 4. Gziut O., Kuczmaszewski J., Zagórski I.: Surface quality assessment following high performance cutting of AZ91HP magnesium alloy, Management and Production Engineering Review, 6(1), 2015, 4–9.
  • 5. Kim J.D., Lee K.B.: Surface Roughness Evaluation in Dry-Cutting of Magnesium Alloy by Air Pressure Coolant, Engineering, 2, 2010, 788–792.
  • 6. Kuczmaszewski J., Pieśko P., Zawada-Michałowska M.: Surface roughness of thin-walled components made of aluminium alloy EN AW-2024 following different milling strategies, 10(30), 2016, 150–158.
  • 7. Kwiatkowski M.P., Kłonica M., Kuczmaszewski J., Satoh S.: Comparative analysis of energetic properties of Ti6Al4V titanium and EN-AW- 2017A(PA6) aluminum alloy surface layers for an adhesive bonding application, Ozone: Science & Engineering: The Journal of the International Ozone Association, 35(3), 2013, 220–228.
  • 8. Matuszak, J., Zaleski, K., Analysis of deburring effectiveness and surface layer properties around edges of workpieces made of 7075 aluminium alloy, Aircraft Engineering and Aerospace Technology, 90(3), 2018, 515–523.
  • 9. Muralidharan S., Karthikeyan N., Kumar A.B., Aatthisugan I.: A study on machinability characteristic in end milling of magnesium composite, International Journal of Mechanical Engineering and Technology, 8(6), 2017, 455–462.
  • 10. Qiao Y., Wang S., Guo P., Yang X., Wang Y.: Experimental research on surface roughness of milling medical magnesium alloy, IOP Conference Series: Materials Science and Engineering, 397(1), 2018, 1–7.
  • 11. Ruslan M.S., Othman K., Ghani J.A., Kassim M.S., Haron C.H.C.: Surface roughness of magnesium alloy AZ91D in high speed milling, Jurnal Teknologi, 78(6–9), 2016, 115–119.
  • 12. Salahshoor M., Guo Y.B.: Cutting mechanics in high speed dry machining of biomedical magnesium–calcium alloy using internal state variable plasticity model, International Journal of Machine Tools & Manufacture, 51, 2011, 579–590.
  • 13. Salahshoor M., Guo Y.B.: Surface integrity of magnesium-calcium implants processed by synergistic dry cutting-finish burnishing, Procedia Engineering, 19, 2011, 288–293.
  • 14. Sathyamoorthy V., Deepan S., Sathya Prasanth S.P., Prabhu L.: Optimization of Machining Parameters for Surface Roughness in End Milling of Magnesium AM60 Alloy, Indian Journal of Science and Technology, 10(32), 2017, 1–7.
  • 15. Sedlaček M., Vilhena L.M., Podgornik B., Vižintin J.: Surface Topography Modelling for Reduced Friction, Strojniški vestnik – Journal of Mechanical Engineering, 57(9), 2011, 674–680.
  • 16. Sedlaček M., Gregorčič P., Podgornik B.: Use of the Roughness Parameters Ssk and Sku to Control Friction – A Method for Designing Surface Texturing, Tribology Transactions, 60(2), 2017, 260–266.
  • 17. Shi K., Zhang D., Ren J., Yao C., Huang X.: Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool, Advances in Mechanical Engineering, 8(1), 2016, 1–9.
  • 18. Zagórski, I., Kłonica, M., Kulisz, M., Łoza, K. Effect of the AWJM Method on the Machined Surface Layer of AZ91D Magnesium Alloy and Simulation of Roughness Parameters Using Neural Networks, Materials, 11(11), 2018, 1–18.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-148c428c-8e47-4b35-9346-447eff390c67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.