PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical and Thermal Properties of Graphene over Composite Materials: A Technical Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The recent years have seen numerous developments in the research and headway of graphene, the thinnest two-dimensional nuclear material. Graphene-based materials and their composites have promising applications in an extensive variety of fields; for example, gadgets, biomedical guides, films, adaptable wearable sensors, and actuators. The most recent investigations and movement in this branch of knowledge regularly deliver conflicting or uncertain outcomes. This article evaluates and outlines the distributed information in order to give a basic and complete diagram of the cutting edge. Initially, the particular basic nature of accessible graphene materials is illustrated as well as the distinctive generation methods accessible thus far. The appraisal at that point talks about the different composites that center diverse sub-practical routines; for example, mechanical and aggregate utilitarian applications (e.g., vitality, hardware biomedical, layers, and sensors). The use of graphene and its subsidiaries in the fabricate of nanocomposites with various polymer frameworks has been inspected. And finally, an ending and point of view are given to talking about the rest of the difficulties for graphene nanocomposites in useful science and building.
Rocznik
Strony
19--30
Opis fizyczny
Bibliogr. 96, fot., rys., wykr.
Twórcy
  • Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Kazla, Rajshahi-6204, Bangladesh
  • Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Kazla, Rajshahi-6204, Bangladesh
  • Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Kazla, Rajshahi-6204, Bangladesh
  • Department of Glass & Ceramics Engineering, Rajshahi University of Engineering & Technology, Kazla, Rajshahi-6204, Bangladesh
Bibliografia
  • [1] Mohan V. (2016). Development of Functional Polymer-Graphene Nanocomposites (Doctoral dissertation), ResearchSpace@ Auckland).
  • [2] Mohan V.B., Liu D., Jayaraman K., Stamm M. & Bhattacharyya D. (2016). Improvements in electronic structure and properties of graphene derivatives. Advanced Materials Letters, 7(6), 421–429.
  • [3] Mohan V.B., Brown R., Jayaraman K. & Bhattacharyya D. (2015). Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity. Materials Science and Engineering: B, 193, 49–60.
  • [4] Novoselo K.S., & Geim A.K. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.
  • [5] Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S. & Geim A.K. (2009). The Electronic Properties of Graphene, Reviews of Modern Physics, 81, 109–162.
  • [6] Moghadam A.D., Omrani E., Menezes P.L. & Rohatgi P.K. (2015). Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review. Composites Part B: Engineering, 77, 402–420.
  • [7] Stoller M.D., Park S., Zhu Y., An J. & Ruoff R.S. (2008). Graphene-based ultracapacitors. Nano Letters, 8(10), 3498–3502.
  • [8] Kuilla T., Bhadra S., Yao D., Kim N.H., Bose S. & Lee J.H. (2010). Recent advances in graphene based polymer composites. Progress in polymer science, 35(11), 1350–1375.
  • [9] Geim A.K. (2009). Graphene: status and prospects. Science, 324(5934), 1530–1534.
  • [10] Ferrari A.C., Bonaccorso F., Fal’ko V., Novoselov K.S., Roche S., Bøggild P., Borini S., Koppens F.H., Palermo V., Pugno N. & Garrido J.A. (2015). Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 7(11), 4598–4810.
  • [11] Mohan V.B., Lau K.T., Hui D. & Bhattacharyya D. (2018). Graphene-based materials and their composites: a review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220.
  • [12] Hossain S.A., Hossen M. & Anower S. (2018). Estimation of damselfish biomass using an acoustic signal processing technique. Journal of Ocean Technology, 13(2), 91–109.
  • [13] Gadipelli S. & Guo Z.X. (2015). Graphene-based materials: Synthesis and gas sorption, storage and separation. Progress in Materials Science, 69, 1–60.
  • [14] Stankovich S., Dikin D.A., Dommett G.H., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.B.T. & Ruoff R.S. (2006). Graphene-based composite materials. Nature, 442(7100), 282–286.
  • [15] Novoselov K.S., Fal V.I., Colombo L., Gellert P.R., Schwab M.G. & Kim K. (2012). A roadmap for graphene. Nature, 490(7419), 192–200.
  • [16] Novoselov K.S., Geim A.K., Morozov S., Jiang D., Katsnelson M., Grigorieva I., Dubonos S.V. & Firsov A.A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197–200.
  • [17] Dikin D.A., Stankovich S., Zimney E.J., Piner R.D., Dommett G.H., Evmenenko G., Nguyen S.B.T & Ruoff R.S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448(7152), 457–460.
  • [18] Huang X., Qi, X., Boey F. & Zhang H. (2012). Graphene-based composites. Chemical Society Reviews, 41(2), 666–686.
  • [19] Hung P.Y., Lau K.T., Fox B., Hameed N., Lee J.H. & Hui D. (2018). Surface modification of carbon fibre using graphene-related materials for multifunctional composites. Composites Part B: Engineering, 133, 240–257.
  • [20] Layek R.K., Uddin M.E., Kim N.H., Lau A.K.T. & Lee J.H. (2017). Noncovalent functionalization of reduced graphene oxide with pluronic F127 and its nanocomposites with gum Arabic. Composites Part B: Engineering, 128, 155–163.
  • [21] Sun X., Liu X., Shen X., Wu Y., Wang Z. & Kim J.K. (2016). Graphene foam/carbon nanotube/poly (dimethyl siloxane) composites for exceptional microwave shielding. Composites Part A: Applied Science and Manufacturing, 85, 199–206.
  • [22] Bose S., Kim N.H., Kuila T., Lau K.T. & Lee J.H. (2011). Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology, 22(29), 295202.
  • [23] Bose S., Kuila T., Uddin M.E., Kim N.H., Lau A.K. & Lee J.H. (2010). In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer, 51(25), 5921–5928.
  • [24] Hung P.Y., Lau K.T., Fox B., Hameed N., Lee J.H. & Hui D. (2018). Surface modification of carbon fibre using graphene-related materials for multifunctional composites. Composites Part B: Engineering, 133, 240–257.
  • [25] Ghosh S., Ghosh R., Guha P.K. & Bhattacharyya T.K. (2015). Humidity sensor based on high proton conductivity of graphene oxide. IEEE Transactions on Nanotechnology, 14(5), 931–937.
  • [26] Hossain S.A., Mallik A. & Arefin M. (2017). A Signal Processing Approach to Estimate Underwater Network Cardinalities with Lower Complexity. Journal of Electrical and Computer Engineering Innovations, 5(2), 131–138.
  • [27] Fang M., Wang K., Lu H., Yang Y. & Nutt S. (2009). Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry, 19(38), 7098–7105.
  • [28] Rosca I.D., Watari F., Uo M. & Akasaka T. (2005). Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon, 43(15), 3124–3131.
  • [29] Istrate O.M., Paton K.R., Khan U., O’Neill A., Bell A.P. & Coleman J.N. (2014). Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon, 78, 243–249.
  • [30] Padmajan Sasikala S., Poulin P. & Aymonier C. (2016). Prospects of Supercritical Fluids in Realizing Graphene-Based Functional Materials. Advanced Materials, 28(14), 2663–2691.
  • [31] Zhang L.L., Zhou R., & Zhao X.S. (2010). Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 20(29), 5983–5992.
  • [32] Chua C.K., & Pumera M. (2014). Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 43(1), 291–312.
  • [33] Gao X., Jang J. & Nagase S. (2009). Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. The Journal of Physical Chemistry C, 114(2), 832–842.
  • [34] Mohan V.B., Lau K.T., Hui D. & Bhattacharyya D. (2018). Graphene-based materials and their composites: a review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220.
  • [35] Liu H., Zhang L., Guo Y., Cheng C., Yang L., Jiang L., Yu G., Hu W., Liu Y. & Zhu D. (2013). Reduction of graphene oxide to highly conductive graphene by Lawesson’s reagent and its electrical applications. Journal of Materials Chemistry C, 1(18), 3104–3109.
  • [36] Park S., An J., Potts J.R., Velamakanni A., Murali S. & Ruoff R.S. (2011). Hydrazine-reduction of graphite-and graphene oxide. Carbon, 49(9), 3019–3023.
  • [37] Hossain S.A., Ali M.F., Akif M.I., Islam R., Paul A.K. & Halder A. (2016). A determination process of the number and distance of sea objects using CHIRP signal in a three sensors based underwater network. In: 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). IEEE, 1–6.
  • [38] Pei S., Zhao J., Du J., Ren W. & Cheng H.M. (2010). Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 48(15), 4466–4474.
  • [39] Pham T.A., Kim J., Kim J.S. & Jeong Y.T. (2011). One-step reduction of graphene oxide with L-glutathione. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1–3), 543–548.
  • [40] Shin H.J., Kim K.K., Benayad A., Yoon S.M., Park H.K., Jung I.S., Jin M.I., Jeong H.-K., Kim J.M., Choi J.Y. & Lee Y.H. (2009). Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 19(12), 1987–1992.
  • [41] Zhang J., Yang H., Shen G., Cheng P., Zhang J. & Guo S. (2010). Reduction of graphene oxide via L-ascorbic acid. Chemical Communications, 46(7), 1112–1114.
  • [42] Shen J., Hu Y., Shi M., Lu X., Qin C., Li C. & Ye M. (2009). Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chemistry of Materials, 21(15), 3514–3520.
  • [43] Shen J., Hu Y., Shi M., Lu X., Qin C., Li C. & Ye M. (2009). Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chemistry of Materials, 21(15), 3514–3520.
  • [44] Tang H., Ehlert G.J., Lin Y. & Sodano H.A. (2011). Highly efficient synthesis of graphene nanocomposites. Nano Letters, 12(1), 84–90.
  • [45] Gao X., Jang J. & Nagase S. (2009). Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. The Journal of Physical Chemistry C, 114(2), 832–842.
  • [46] Wei Z., Wang D., Kim S., Kim S.Y., Hu Y., Yakes M.K., Laracuente A.R., Dai Z., Marder S.R., Berger C., King W.P., de Heer W.A., Sheehan P.E. & King W.P. (2010). Nanoscale tunable reduction of graphene oxide for graphene electronics. Science, 328(5984), 1373–1376.
  • [47] Chen W. & Yan L. (2010). Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale, 2(4), 559–563.
  • [48] Chen W., Yan L. & Bangal P.R. (2010). Preparation of graphene
  • by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon, 48(4), 1146–1152.
  • [49] Wu T., Liu S., Li H., Wang L. & Sun X. (2011). Production of reduced graphene oxide by UV irradiation. Journal of nanoscience and nanotechnology, 11(11), 10078–10081.
  • [50] Lee G., Lee W., Nah S., Ji S., Hwang J.Y., Lee S.S., Parke S., Chae S.S. & Lee J.O. (2019). Solution-processable method for producing high-quality reduced graphene oxide displaying ‘self-catalytic healing’. Carbon, 141, 774–781.
  • [51] Sadhukhan S., Ghosh T.K., Roy I., Rana D., Bhattacharyya A., Saha R., Chattopadhyay S., Khatua S., Acharya K. & Chattopadhyay D. (2019). Green synthesis of cadmium oxide decorated reduced graphene oxide nanocomposites and its electrical and antibacterial properties. Materials Science and Engineering: C, 99, 696–709.
  • [52] Tang H., Ehlert G.J., Lin Y., & Sodano H.A. (2011). Highly efficient synthesis of graphene nanocomposites. Nano Letters, 12(1), 84–90.
  • [53] McAllister M.J., Li J.L., Adamson D.H., Schniepp H.C., Abdala A.A., Liu J., Herrera-Alonso M., Milius D.L., Car R., Prud’homme R.K. & Aksay I.A. (2007). Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 19(18), 4396–4404.
  • [54] Prusty K., Barik S. & Swain S.K. (2019). A Correlation between the Graphene Surface Area, Functional Groups, Defects, and Porosity on the Performance of the Nanocomposites. In: Functionalized Graphene Nanocomposites and their Derivatives, Elsevier, 265–283.
  • [55] Sun Y., Pan J., Zhang Z., Zhang K., Liang J., Wang W., Yuan Z., Hao Y., Wang B., Wang J. & Wu Y. (2019). Elastic Properties and Fracture Behaviors of Biaxially-Deformed, Polymorphic MoTe2. Nano Letters, 19(2), 761–769.
  • [56] Chu L., Shi J. & Braun R. (2019). The equivalent Young’s modulus prediction for vacancy defected graphene under shear stress. Physica E: Low-dimensional Systems and Nanostructures, 110, 115–122.
  • [57] Sari E., Uzek R. & Merkoçi A. (2019). Paper Based Photoluminescent Sensing Platform with Recognition Sites for Tributyltin. ACS sensors.
  • [58] Xu Y., Peng Y., You T., Yao L. Geng J., Dearn K.D. & Hu X. (2018). Nano-MoS2 and Graphene Additives in Oil for Tribological Applications. In: Nanotechnology in Oil and Gas Industries, Springer, Cham, 151–191.
  • [59] Mohan V.B., Lau K.T., Hui D. & Bhattacharyya D. (2018). Graphene-based materials and their composites: a review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220.
  • [60] Luceño Sánchez J., Peña Capilla R. & Díez-Pascual A. (2018). High-Performance PEDOT: PSS/Hexamethylene Diisocyanate-Functionalized Graphene Oxide Nanocomposites: Preparation and Properties. Polymers, 10(10), 1169.
  • [61] Mohan V.B., Lau K.T., Hui D., & Bhattacharyya D. (2018). Graphene-based materials and their composites: a review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220.
  • [62] Sun X.Y., Liu H. & Ju S. (2019). Dependence of wrinkling geometric patterns on the chirality of monolayer graphene under shear deformation. Physica E: Low-dimensional Systems and Nanostructures, 105, 62–67.
  • [63] Farshid B., Lalwani G., Shir Mohammadi M., Srinivas Sankaran J., Patel S., Judex S., Simonsen J. & Sitharaman B. (2019). Two-dimensional graphene oxide reinforced porous biodegradable polymeric nanocomposites for bone tissue engineering. Journal of Biomedical Materials Research Part A, 14(3), 900–909.
  • [64] Guan L.Z., Zhao L., Wan Y.J. & Tang L.C. (2018). Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications. Nanoscale, 10(31), 14788–14811.
  • [65] Sakorikar T., Kavitha M.K., Tong S.W., Vayalamkuzhi P., Loh K.P. & Jaiswal M. (2018, May). Graphene: Polymer composites as moisture barrier and charge transport layer toward solar cell applications. In: AIP Conference Proceedings, Vol. 1953, No. 1, AIP Publishing, 100029.
  • [66] Young R.J., Kinloch I.A., Gong L. & Novoselov K.S. (2012). The mechanics of graphene nanocomposites: a review. Composites Science and Technology, 72(12), 1459–1476.
  • [67] Ren S., Cui M., Li Q., Li W., Pu J., Xue Q. & Wang L. (2019). Barrier mechanism of nitrogen-doped graphene against atomic oxygen irradiation. Applied Surface Science, 79, 669–678.
  • [68] Kumar A., Sharma K. & Dixit A.R. (2019). A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. Journal of Materials Science, 8, 1–35.
  • [69] Gavrilov S.N., Krivtsov A.M. & Tsvetkov D.V. (2019). Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Continuum Mechanics and Thermodynamics, 31(1), 255–272.
  • [70] Moghaddasi Fereidani R. & Segal D. (2019). Phononic heat transport in molecular junctions: quantum effects and vibrational mismatch. The Journal of Chemical Physics, 150(2), 024105.
  • [71] Chowdhury S., Pan S., Balasubramanian R. & Das P. (2019). Three-Dimensional Graphene-Based Macroscopic Assemblies as Super-Absorbents for Oils and Organic Solvents. In: A New Generation Material Graphene: Applications in Water Technology, Springer, Cham, 43–68.
  • [72] Mallik A., Hossain S.A., Karim A.B. & Hasan S.M. (2019). Development of LOCAL-IP based Environmental Condition Monitoring using Wireless Sensor Network. International Journal of Sensors, Wireless Communications and Control, 9, 1–8
  • [73] Hajjar Z., Morad Rashidi A. & Ghozatloo A. (2014). Enhanced thermal conductivities of graphene oxide nanofluids. International Communications in Heat and Mass Transfer, 57, 128–131.
  • [74] Renteria J.D., Ramirez S., Malekpour H., Alonso B., Centeno A., Zurutuza A., Cocemasov A.I., Nika D.L. & Balandin A.A. (2015). Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Advanced Functional Materials, 25(29), 4664–4672.
  • [75] Wang F., Wang H. & Mao J. (2019). Aligned-graphene composites: a review. Journal of Materials Science, 54(1), 36–61.
  • [76] Tian J., Shi H., Hu H., Chen B., Bao Y. & Tang P. (2019). Implementation of Atomically Thick Graphene and Its Derivatives in Electromagnetic Absorbers. Applied Sciences, 9(3), 388.
  • [77] Del Giudice F., Cunning B.V., Ruoff R.S. & Shen A.Q. (2018). Filling the gap between transient and steady shear rheology of aqueous graphene oxide dispersions. Rheologica Acta, 57(4), 293–306.
  • [78] Shahzad F., Alhabeb M., Hatter C.B., Anasori B., Hong S.M., Koo C.M. & Gogotsi Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137–1140.
  • [79] Henriques P.C., Borges I., Pinto A.M., Magalhaes F.D. & Gonçalves I.C. (2018). Fabrication and antimicrobial performance of surfaces integrating graphene-based materials. Carbon, 132, 709–732.
  • [80] Avijit M. & Hasan M. (2018). PV/T Systems for Renewable Energy Storage: A Review. World Scientific News, 96, 83–95.
  • [81] Chen F., Ying J., Wang Y., Du S., Liu Z. & Huang Q. (2016). Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon, 96, 836–842.
  • [82] Tapasztó O., Tapasztó L., Lemmel H., Puchy V., Dusza J., Balázsi C. & Balázsi K. (2016). High orientation degree of graphene nanoplatelets in silicon nitride composites prepared by spark plasma sintering. Ceramics International, 42(1), 1002–1006.
  • [83] Karim A.B., Avro S.S. & Shahriar S. (2019). Prospect of Geothermal Energy Resources in Bangladesh. International Journal of Renewable Energy Resources, 8(2), 22–28.
  • [84] Wang X.D., Zhou J., Lao C.S., Song J.H., Xu N.S. & Wang Z.L. (2007). In situ field emission of density‐controlled ZnO nanowire arrays. Advanced Materials, 19(12), 1627–1631.
  • [85] Zhong B., Dong H., Luo Y., Zhang D., Jia Z., Jia D. & Liu F. (2017). Simultaneous reduction and functionalization of graphene oxide via antioxidant for highly aging resistant and thermal conductive elastomer composites. Composites Science and Technology, 151, 156–163.
  • [86] Svidró J. & Diószegi A. (2018). New Possibilities in Thermal Analysis of Molding Materials. Journal of Casting & Materials Engineering, 2(4), 67–69.
  • [87] Fernández-Calvo A.I., Lizarralde I., Sal E., Rodriguez P., de Zabalegui E.O., Cia I. & Rios A. (2019). Grain-Size Prediction Model in Aluminum Castings Manufactured by Low-Pressure Technology. Journal of Casting & Materials Engineering, 2(4), 71–77.
  • [88] Mallik A., Arefin M.A. & Shahadat M.M.Z. (2018). Design and feasibility analysis of a low-cost water treatment plant for rural regions of Bangladesh. AIMS Agriculture and Food, 3(3), 181–204. Doi: 10.3934/agrfood.2018.3.181.
  • [89] Kaiser M.S. (2018). Effects of solution treatment on wear behaviour of Al-12Si-1Mg piston alloy containing trace Zr. Journal of Casting & Materials Engineering, 2(2), 30–37.
  • [90] Hossain S.A., Ali M. F., Akif M. I., Islam R., Paul A.K., & Halder A. (2016). A determination process of the number and distance of sea objects using CHIRP signal in a three sensors based underwater network. In: Electrical Engineering and Information Communication Technology (ICEEICT), 2016 3rd International Conference on, 1–6. IEEE, 2016.
  • [91] Nahian M.R., Zaman M.S., Islam M.N. & Rokunuzzaman M. (2018). Development of a Pressure Sensing Module and Flow Control System for a Prototype Pump Test Bed. Indonesian Journal of Electronics and Instrumentation Systems, 8(2), 155–166.
  • [92] Huang C., Fu S., Zhang Y., Lauke B., Li L. & Ye L. (2005). Cryogenic properties of SiO2/epoxy nanocomposites. Cryogenics, 45(6), 450–454.
  • [93] Kim S., Young J.C., Hwi J.W., Qijun S., Sungjoo L., Moon S.K., Young J.S., Zhong L.W. & Jeong H.C. (2018). Piezotronic Graphene Barristor: Efficient and Interactive Modulation of Schottky Barrier. Nano Energy, 50, 598–605.
  • [94] Lim N., Tae J.Y., Jin T.K., Yusin P., Yogeenth K., Hyeonghun K., Woochul K., Byoung H.L. & Gun Y.J. (2018). Tunable graphene doping by modulating the nanopore geometry on a SiO2/Si substrate. RSC Advances, 8(17), 9031–9037.
  • [95] Li Z., Wang R., Young R.J., Deng L., Yang F. & Hao L. (2013). Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer, 54(23), 6437–6446.
  • [96] Jacob G.J, Bandyopadhyay A., Bhowmick A.K. (2008). New generation layered nanocomposites derived from ethylene-co-vinyl acetate and naturally occurring graphite. Journal of Applied Polymer Science, 108(3), 1603–1616.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-147ee570-98f6-4ce7-adf2-f86038b0fa30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.