PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the influence of electrical parameters of concrete and reinforcement inside concrete walls on the values of the electric field intensity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza wpływu parametrów elektrycznych betonu oraz zbrojenia wewnątrz betonowych ścian na wartości natężenia pola elektrycznego
Języki publikacji
EN
Abstrakty
EN
The aim of the article is to analyze the influence of the variability of the electrical parameters of non-ideal and absorbing dielectric (usual concrete) on the values of the electric field intensity. A detailed analysis was also made of the influence of the reinforcement diameter, the number of rows and the spacing between the bars on the values of the electric field intensity. The subject of the research was a model containing a loadbearing wall made of concrete (absorbing dielectric) with reinforcement in the form of steel rods (conductor). Four reinforcement systems commonly used in construction were analyzed. Additionally, the discussion covered the influence of electrical parameters (electric permittivity, conductivity) on the field intensity values calculated for heterogeneous, complex material structures. The results of the field generated by the wireless communication system operating at the frequency f = 5 GHz are presented. The numerical finite difference time domain (FDTD) method was used. The influence of the values of electric permittivity and conductivity of concrete on the field intensity values was discussed in detail.
PL
Celem publikacji jest analiza wpływu zmienności wartości parametrów elektrycznych nieidealnego i absorbującego dielektryka (beton zwykły) na wartości natężenia pola elektrycznego. Również dokonano szczegółowej analizy wpływu średnicy zbrojenia, liczby rzędów oraz rozstawu pomiędzy prętami na wartości natężenia pola elektrycznego. Przedmiotem badań był model zawierający ścianę nośną wykonaną z betonu (absorbujący dielektryk) wraz ze zbrojeniem w postaci stalowych prętów (przewodnik). Analizowano cztery, powszechnie stosowane w budownictwie układy zbrojenia. Dodatkowo dyskusji poddano wpływ parametrów elektrycznych (przenikalność elektryczna, konduktywność) na wartości natężenia pola obliczone dla niejednorodnych, złożonych struktur materiałowych. Zaprezentowane zostały wyniki pola generowanego przez system komunikacji bezprzewodowej pracujący przy częstotliwości f=5 GHz. Zastosowano numeryczną metodę różnic skończonych w dziedzinie czasu (FDTD). Szczegółowo omówiono wpływ stosowanych w literaturze wartości przenikalności elektrycznych oraz konduktywności betonu na wartości natężenia pola.
Rocznik
Strony
111--117
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Białystok University of Technology, Faculty of Electrical Engineering, Department of Electrical Engineering, Power Electronics and Power Engineering, Wiejska 45D, 15-351 Białystok
Bibliografia
  • [1] Begum H., Okamoto M., Tanaka S., Measuring the diameter of reinforcing bars in concrete nondestructively using electromagnetic wave radar. The University Electro-Communications, Japan, SICE Annual Conference, 2008
  • [2] Pinhasi Y., Yahalom A., Petnev S., Propagation of ultra wide-band signals in lossy dispersive media, IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, COMCAS (2008), 1-10
  • [3] Landron O., Feuerstein M.J., Rappaport T.S., A comparison of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environment, IEEE Transactions on Antennas and Propagation, 44 (1996), no. 3, 341-351
  • [4] Ping L., Qi-tao Y., Yun-liang L., Analysis of electromagnetic propagation into reinforced concrete walls by FEM-PML methods. IEEE International Conference on Microwave and Millimeter Wave Technology, ICMMT 2008 Proceedings, (2008), 1-4
  • [5] Ping L., Xuewang W., The reflection and transmission properties of reinforced concrete wall. International Conference on Microwave and Millimeter Wave Technology, ICMMT’07, (2007), 1-4
  • [6] Shah M.A., Hasted J.B., Moore L., Microwave absorption by water in building materials: aerated concrete, British Journal of Applied Physics, 16 (1965), no. 11, 1747-1754
  • [7] Hasted J.B., Shah M.A., Microwave absorption by water in building materials. British Journal of Applied Physics, 15 (1964), 825-836
  • [8] Yang M., Stavrou S., Three-dimensional modal transmission-line method for radio wave propagation through periodic building structures. IEEE Proceedings Microwaves, Antennas and Propagation, (2005), 597-603
  • [9] Jamroży Z., Beton i jego technologie, Wydawnictwo Naukowe PWN, Warszawa, 2021
  • [10] Starosolski W., Konstrukcje żelbetowe według Eurokodu 2 i norm związanych, Tom 1, Wydawnictwo Naukowe PWN, 2019
  • [11] Chiba H., Miyazaki Y., Analysis of radio wave reflection and transmission characteristics at reinforced concrete slab bynumerical simulation and scaled model experiment. International Symposium on Electromagnetic Compatibility, Japan, 19P301 (1999), 424-427
  • [12] Stankiewicz J.M., Comparison of the efficiency of the WPT system using circular or square planar coils, Przegląd Elektrotechniczny, 97 (2021), no. 10, 38-43
  • [13] Champagne N. J. II, Berryman J. G., Buettner H. M., FDFD: A 3D finite-difference frequency-domain code for electromagnetic induction tomography, Journal of Computational Physics, Academic Press, 170 (2001), no. 2, 830-848
  • [14] Stankiewicz J.M., The analysis of the influence of the plane coils geometry configuration on the efficiency of WPT system, Przegląd Elektrotechniczny, 96 (2020), no. 10, 174-178
  • [15] Dalke R. A., Holloway Ch. L., McKenna P., Johansson M., Ali A. S., Effects of reinforced concrete structures on RF communications. IEEE Trans. Electromagnetic Compatibility, 42 (2000), no. 4, 486-496
  • [16] Ghodgaonkar D. K., Majid Wan Mahmood B. W. A., Majid Rosnoizam B. A., Accurate measurement of electromagnetic properties of concrete for nondestructive evaluation at microwave frequencies. Proc. Int. Conf. Concrete Durability and Repair Technology, University of Dundee International Congress, Dundee, Scotland (UK), 9 (1999)
  • [17] Travassos L., Ida N., Vollaire C., Nicolas A., Time-domain modeling of radar assessment of concrete: a parametric study. t. PA6, Numerical Techniques, (2008)
  • [18] Zhao Z. B., Cui X., Li L., Gao Ch., Analysis of shielding performance of reinforced concrete structures using the method of moments. IEEE Transactions on Magnetics, 44 (2008), no. 6, 1474-1477
  • [19] Van Damme S., Franchois A., Taerwe L., Comparison of two coaxial probes for the non-destructive evaluation of a steel fiber reinforced concrete layer. Proceedings of the 21st IEEE Instrumentation andMeasurement Technology Conference, IMTC’04, 1 (2004), 579- 582
  • [20] Rzepecka M. A., Hamid M. A. K., Soliman Afifi H., Monitoring of Concrete Curing Process by Microwave Terminal Measurements. IEEE Transactions on Industrial Electronics and Control Instrumentation, vol. IECI-19, 4 (1972), 120-125
  • [21] Chia M. Y. W., The effects of reinforced concrete walls/floors on wireless personal communications systems (PCS). Antennas and Propagation Society International Symposium, AP-S, 4 (1995), 1956-1959, 1995
  • [22] Dehmollaian M., Sarabandi K., An approximate solution of scattering from reinforced concrete walls. IEEE Transactions on Antennas Propagation, 56 (2008), no. 8, 2681-2690
  • [23] Bungey J. H., Sub-surface radar testing of concrete: a review. Construction and Building Materials, 18 (2004), 1-8
  • [24] Tanaka S., Wakabayashi M., On measurement of the depth and the diameter of steel bars in reinforced concrete using electromagnetic wave (radar). SICE-ICASE International Joint Conference, 8 (2006), 2555-2559
  • [25] Peña D., Feick R., Hristov H. D., Grote W., Measurement and modeling of propagation losses in brick and concrete walls for the 900-MHz band. IEEE Trans. Antennas Propag., 51 (2003), no. 1, 31-39
  • [26] Holloway C.L., Perini P.L., DeLyser R.R., Allen K.C., Analysis of composite walls and their effects on shortpath propagation modeling. IEEE Trans. Veh. Technol., 46 (1997), 730-738
  • [27] Richalot, E., Bonilla M., Won M., Fouad-Hanna V., Baudrand H., Wiart J., Electromagnetic propagation into reinforced-concrete walls. IEEE Transactions on Microwave Theory and Techniques, 48 (2000), no. 3, 357-366
  • [28] Kaiser T., Smart antennas: state of the art. Hindawi Publishing Corporation, (2005)
  • [29] Antonini G., Orlandi A., D’elia S., Shielding effects of reinforced concrete structures to electromagnetic fields due to GSM and UMTS systems. IEEE Transactions on Magnetic, 39 (2003), no. 3, 1582-1585
  • [30] Tan S. Y., Tan M. Y., Tan H. S., Multipath delay measurements and modeling for interfloor wireless communications. IEEE Transactions on Vehicular Technology, 49 (2000), no. 4, 1334-1341
  • [31] Boryssenko A., Boryssenko O., Lishchenko A., Prokhorenko V., Inspection of internal structure of walls by subsurface radar. IEEE Aerospace and Electronic Systems Magazine, 21 (2006), no. 10, 28-31
  • [32] Paknys R., Reflection and transmission by reinforced concrete – Numerical and asymptotic analysis. IEEE Trans. Antennas Propag., 51 (2003), no. 10, 2852-2861
  • [33] Yang M., Stavrou S., Three-dimensional modal transmission-line method for radio wave propagation through periodic building structures. IEEE Proceedings Microwaves, Antennas and Propagation, 12 (2005), 597-603
  • [34] Savov S. V., Herben M. H. A. J., Modal transmissionline modeling of propagation of plane radiowaves through multilayer periodic building structures. IEEE Trans. Antennas Propag., 51 (2003), no. 9, 2244-2251
  • [35] Ping L., Gui Ch., Yun-liang L., Effects of reinforced concrete walls on transmission of EM wave in WLAN. Microwave and Millimeter Wave Technology, ICMMT 2008, International Conference, 1 (2008), 519-522, 21-24
  • [36] Ping L., Qi-tao Y., Yun-liang L., Analysis of electromagnetic propagation into reinforced concrete walls by FEM-PML methods. IEEE International Conference on Microwave and Millimeter Wave Technology, ICMMT 2008 Proceedings, 1-4, (2008)
  • [37] Sadiku M.N.O., Numerical techniques in electromagnetics. CRS Press LLC. 2nd edition, (2001)
  • [38] Kharkovsky S. N., Akay M. F., Hasar U. C., Atis C. D., Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens. IEEE Transactions on Instrumentation and Measurement, 51 (2002), no. 6, 1210-1218
  • [39] Sato K., Kozima H., Masuzawa H., Manabe T., Ihara T., Kasashima Y., Yamaki K., Measurements of reflection characteristics and refractive indices of interior construction materials in millimeter-wave bands. IEEE 45th Vehicular Technology Conference, 1 (1995), 449-453
  • [40] Sato K., Manabe T., Polivka J., Ihara T., Kasashima Y., Yamaki K., Measurement of the complex refractive index of concrete at 57.5GHz. IEEE Trans. Antennas Propagat., 44 (1996), no. 1, 35-40
  • [41] Taflove A., Hagness S.C., Computational electrodynamics, The Finite–Difference Time–Domain Method. Boston, Artech House, (2005)
  • [42] Zienkiewicz O.C., Taylor R.L., Zhu J.Z., The finite element method: it's basis & fundamentals, 7th edition, Butterworth-Heinemann, (2013)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1477a661-8ae2-4d83-9f04-bc1b840cd2f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.