PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New Virtual Porous Carbons Based on Carbon EDIP Potential and Monte Carlo Simulations

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using simple Metropolis Monte Carlo simulations, the series of virtual porous carbons (VPCs) is generated. During the computations, the carbon EDIP potential is employed. Structures in the series have systematically changing porosity due to the differences in the carbon density. The obtained VPCs are similar to the model proposed by Harris et al., but they do not show its main drawback, because they contain curved fullerene-like sheets, which are interconnected and form one three-dimensional structure. The porosity of VPCs is characterised using a simple geometrical method proposed by Bhattacharya and Gubbins. In order to confirm the reality of the obtained new model carbons and their usefulness for modelling of adsorption phenomena, Monte Carlo simulations of argon adsorption on them are performed. The obtained isotherms are analysed using standard adsorption methods like αs-plots, adsorption potential distributions curves and Dubinin-Astakhov model. The results reveal a close relationship between the systematic changes in the porosity and the adsorption properties. The observed regularities correspond with experimental observations and theoretical studies.
Twórcy
autor
  • Physicochemistry of Carbon Materials Research Group, Department of Chemistry N. Copernicus University, Gagarin St. 7, 87-100 Toru´n, Poland
Bibliografia
  • [1] M.J. Biggs and A. Buts, Virtual porous carbons: what they are and what they can be used for, Mol. Simul. 32, 579-593 2006).
  • [2] P.A. Gauden, A.P. Terzyk and S. Furmaniak, Modele budowy węgla aktywnego wczoraj – dzisiaj – jutro,Wiadomości Chemiczne 62, 403-447 (2008).
  • [3] A.P. Terzyk, S. Furmaniak, P.A. Gauden, P. J .F. Harris and P. Kowalczyk, Virtual porous carbons, in: J.M.D. Tascón (ed.) Novel Carbon Adsorbents, Elsevier, ch. 3, 2012.
  • [4] M.J. Biggs, A. Buts and D.Williamson, Molecular simulation evidence for solidlike adsorbate in complex carbonaceous micropore structures, Langmuir 20, 5786-5800 (2004).
  • [5] M.J. Biggs, A. Buts and D. Williamson, Absolute assessment of adsorption-based porous solid characterization methods: comparison methods, Langmuir 20, 7123-7138 (2004).
  • [6] Q. Cai, A. Buts, M.J. Biggs and N.A. Seaton, Evaluation of methods for determining the pore size distribution and pore-network connectivity of porous carbons, Langmuir 23, 8430-8440 (2007).
  • [7] Q. Cai, A. Buts, N.A. Seaton and M.J. Biggs, A pore network model for diffusion in nanoporous carbons: validation by molecular dynamics simulation, Chem. Eng. Sci. 63, 3319-3327 (2008).
  • [8] D.D. Do and H.D. Do, Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data, J. Phys. Chem. B 110, 17531-17538 (2006).
  • [9] D.D. Do, D. Nicholson and H.D. Do, Heat of adsorption and density distribution in slit pores with defective walls: GCMC simulation studies and comparison with experimental data, Appl. Surf. Sci. 253, 5580-5586 (2007).
  • [10] G.R. Birkett and D.D. Do, On the physical adsorption of gases on carbon materials from molecular simulation, Adsorption 13, 407-424 (2007).
  • [11] A.Wongkoblap and D.D. Do, Characterization of Cabot nongraphitized carbon blacks with a defective surface model: adsorption of argon and nitrogen, Carbon 45, 1527-1534 (2007).
  • [12] L.F. Herrera, D.D. Do and G.R. Birkett, Comparative simulation study of nitrogen and ammonia adsorption on graphitized and nongraphitized carbon blacks. J. Colloid Interface Sci. 320, 415-422 (2008).
  • [13] G.R. Birkett and D.D. Do: Characteristic heats of adsorption for slit pore and defected pore models, Langmuir 24, 4853-4856 (2008).
  • [14] L.F. Herrera and D.D. Do, Effects of surface structure on the molecular projection area. Adsorption of argon and nitrogen onto defective surfaces, Adsorption 15, 240-246 (2009).
  • [15] P.J.F. Harris and S.C. Tsang: High-resolution electron microscopy studies of non-graphitizing carbons, Philos. Mag. A 76, 667-677 (1997).
  • [16] P.J.F. Harris, Structure of non-graphitising carbons, Int. Mater. Rev. 42, 206-218 (1997).
  • [17] P.J.F. Harris, A. Burian and S. Duber, High-resolution electron microscopy of a microporous carbon, Philos. Mag. Lett. 80, 381-386 (2000).
  • [18] P.J.F. Harris, New perspectives on the structure of graphitic carbons, Crit. Rev. Solid State Mater. Sci. 30, 235-253 (2005).
  • [19] P.J.F. Harris, Z. Liu and K. Suenaga, Imaging the atomic structure of activated carbon, J. Phys.: Condens. Matt. 20, 362201 (2008).
  • [20] P.J.F. Harris, Fullerene-related structure of non-graphitizing carbons, in: A.P. Terzyk, P.A. Gauden and P. Kowalczyk (eds.) Carbon Materials – Theory and Practice, Research Signpost, Kerala, India, p. 1-14, 2008.
  • [21] P.J.F. Harris, Z. Liu and K. Suenaga, Imaging the structure of activated carbon using aberration corrected TEM. J. Phys.: Conf. Ser. 241, 012050 (2010).
  • [22] T. Petersen, I. Yarovsky, I. Snook, D.G. McCulloch and G. Opletal, Structural analysis of carbonaceous solids using an adapted reverse Monte Carlo algorithm, Carbon 41, 2403-2411 (2003).
  • [23] G. Opletal, T.C. Petersen, D.G. McCulloch, I.K. Snook and I. Yarovsky, The structure of disordered carbon solids studied using a hybrid reverse Monte Carlo algorithm, J. Phys.: Condens. Matt. 17, 2605-2616 (2005).
  • [24] S.K. Jain, R.J.M. Pellenq, J.P. Pikunic and K.E. Gubbins, Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method, Langmuir 22, 9942-9948 (2006).
  • [25] S.K. Jain, K.E. Gubbins, R.J.M. Pellenq and J.P. Pikunic, Molecular modeling and adsorption properties of porous carbons, Carbon 44, 2445-2451 (2006).
  • [26] B. Coasne, S.K. Jain, L. Naamar and K.E. Gubbins, Freezing of argon in ordered and disordered porous carbon, Phys. Rev. B 76, 085416 (2007).
  • [27] B. Coasne, C. Alba-Simionesco, F. Audonnet, G. Dosseh and K.E. Gubbins, Adsorption, structure and dynamics of benzene in ordered and disordered porous carbons, Phys. Chem. Chem. Phys. 13, 3748-3757 (2011).
  • [28] J.C. Palmer and K.E. Gubbins, Atomistic models for disordered nanoporous carbons using reactive force fields, Microporous Mesoporous Mater. 154, 24-37 (2012).
  • [29] P. Kowalczyk, P.A. Gauden and A.P. Terzyk, Structural properties of amorphous diamond-like carbon: percolation, cluster, and pair correlation analysis. RSC Adv. 2, 4292-4298 (2012).
  • [30] R.C. Powles, N.A. Marks and D.W.M. Lau, Self-assembly of sp2-bonded carbon nanostructures from amorphous precursors, Phys. Rev. B 79, 075430 (2009).
  • [31] A. Kumar, R.F. Lobo and N.J. Wagner, Grand canonical Monte Carlo simulation of adsorption of nitrogen and oxygen in realistic nanoporous carbon models, AIChE J. 57, 1496-1505 (2011).
  • [32] L.J. Peng and J.R. Morris, Structure and hydrogen adsorption properties of low density nanoporous carbons from simulations, Carbon 50, 1394-1406 (2012).
  • [33] A.P. Terzyk, S. Furmaniak, P.A. Gauden, P.J.F. Harris, R.P. Wesołowski and P. Kowalczyk, Virtual porous carbon (VPC) models: application in the study of fundamental activated carbon properties by molecular simulations, J.F. Kwiatkowski (ed.) Activated Carbon: Classifications, Properties and Applications, Nova Science Publishers, New York, ch. 8, 2011.
  • [34] A.P. Terzyk, S. Furmaniak, P.A. Gauden, P.J.F. Harris, J. Włoch and P. Kowalczyk, Hyper-parallel tempering Monte Carlo simulations of Ar adsorption in new models of microporous non-graphitizing activated carbon: effect of microporosity, J. Phys.: Condens. Matt. 19, 406208 (2007).
  • [35] A.P. Terzyk, S. Furmaniak, P.J.F. Harris, P.A. Gauden, J. Włoch, P. Kowalczyk and G. Rychlicki, GCMC simulations of Ar adsorption in new model of non-graphitizing activated carbon. How realistic is the pore size distribution calculated from adsorption isotherms using standard methods?, Phys. Chem. Chem. Phys. 9, 5919-5929 (2007).
  • [36] A.P. Terzyk, S. Furmaniak, P.A. Gauden, P.J.F. Harris and J. Włoch, Testing isotherm models and recovering empirical relationships for adsorption in microporous carbons using virtual carbon models and grand canonical Monte Carlo simulations, J. Phys.: Condens. Matt. 20, 385212 (2008).
  • [37] S. Furmaniak, A.P. Terzyk, P.A. Gauden, P.J.F. Harris and P. Kowalczyk, Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N2 and CO2 adsorption isotherms? Simulation results for a realistic carbon model, J. Phys.: Condens. Matt. 21, 315005 (2009).
  • [38] A.P. Terzyk, P.A. Gauden, S. Furmaniak, R.P. Wesołowski and P.J.F. Harris, Molecular dynamics simulation insight into the mechanism of phenol adsorption at low coverages from aqueous solutions on microporous carbons, Phys. Chem. Chem. Phys. 12, 812-817 (2010).
  • [39] S. Furmaniak, A.P. Terzyk, P.A. Gauden, P.J.F. Harris and P. Kowalczyk, The influence of carbon surface oxygen groups on Dubinin-Astakhov equation parameters calculated from CO2 adsorption isotherm, J. Phys.: Condens. Matt. 22, 085003 (2010).
  • [40] P.A. Gauden, A.P. Terzyk, S. Furmaniak, P.J.F. Harris and P. Kowalczyk, BET surface area of carbonaceous adsorbents –verification using geometric considerations on virtual porous carbon models, Appl. Surf. Sci. 256, 5204-5209 (2010).
  • [41] A.P. Terzyk, S. Furmaniak, R.P. Wesołowski, P.A. Gauden and P.J.F. Harris, Methane storage in microporous carbons – effect of porosity and surface chemical composition tested on realistic carbon model, B.B. Saha and K.C. Ng (eds.) Advances in Adsorption Technology, Nova Science Publishers, New York, ch. 14, 2010.
  • [42] S. Furmaniak, A.P. Terzyk, P.A. Gauden P., Kowalczyk and P.J.F. Harris, The influence of the carbon surface chemical composition on Dubinin-Astakhov equation parameters calculated from SF6 adsorption data – grand canonical Monte Carlo simulation, J. Phys.: Condens. Matt. 23, 395005 (2011).
  • [43] P .Kowalczyk, P.A. Gauden, A.P. Terzyk, S. Furmaniak and P.J.F. Harris, Displacement of methane by coadsorbed carbon dioxide is facilitated in narrow carbon nanopores, J. Phys. Chem. C 116, 13640-13649 (2012).
  • [44] N.A. Marks, Generalizing the environment-dependent interaction potential for carbon, Phys. Rev. B 63, 035401 (2000).
  • [45] N. Marks: Modelling diamond-like carbon with the environment-dependent interaction potential, J. Phys.: Condens. Matt. 14, 2901-2927 (2002).
  • [46] S. Furmaniak, A.P. Terzyk, P.A. Gauden, N.A. Marks, R.C. Powles and P. Kowalczyk, Simulating the changes in carbon structure during the burn-off process, J. Colloid Interface Sci. 360, 211-219 (2011).
  • [47] G.J. Opletal, Structural Simulations using the Hybrid Reverse Monte Carlo Method, Ph.D. thesis, RMIT, Melbourne, Australia 2005.
  • [48] S. Bhattacharya and K.E. Gubbins, Fast method for computing pore size distributions of model materials, Langmuir 22, 7726-7731 (2006).
  • [49] Q. Yan and J.J. de Pablo: Hyper-parallel tempering Monte Carlo: application to the Lennard-Jones fluid and the restricted primitive model, J. Chem. Phys. 111, 9509-9516 (1999).
  • [50] D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego 1996.
  • [51] D.S. Franzblau, Computation of ring statistics for network models of solids, Phys. Rev. E 44, 4925-4930 (1991).
  • [52] D.D. Do and H.D. Do, Effects of potential models in the vapor–liquid equilibria and adsorption of simple gases on graphitized thermal carbon black. Fluid Phase Equilib. 236, 169-177 (2005).
  • [53] W.A. Steele: The Interaction of Gases with Solid Surfaces, Pergamon Press, Oxford 1974.
  • [54] N. Setoyama, T. Suzuki and K. Kaneko, Simulation study on the relationship between a high resolution α s plot and the pore size distribution for activated carbon, Carbon 36, 1459-1467 (1998).
  • [55] T. Ohba and K. Kaneko, Internal surface area evaluation of carbon nanotube with GCMC Simulation-assisted N2 adsorption, J. Phys. Chem. B 106, 7171-7176 (2002).
  • [56] A.P. Terzyk, P.A. Gauden, S. Furmaniak and P. Kowalczyk, Heterogeneity on high-resolution αs plots for carbon nanotubes – GCMC study, Phys. Chem. Chem. Phys. 10, 4551-4554 (2008).
  • [57] S. Furmaniak, A.P. Terzyk, P.A. Gauden, R.P. Wesołowski and P. Kowalczyk, Ar, CCl4, and C6H6 Adsorption outside and inside of the bundles of multi-walled carbon nanotubes –simulation study, Phys. Chem. Chem. Phys. 11, 4982-4995 (2009).
  • [58] A.P. Terzyk, S. Furmaniak, P.A. Gauden and P. Kowalczyk, Fullerene intercalated graphene nanocontainers – the mechanism of Ar adsorption and the test of high pressure CH4 and CO2 storage capacities, Adsorpt. Sci. Technol. 27, 281-296 (2009).
  • [59] M. Kruk, M. Jaroniec and K.P. Gadkaree, Determination of the specific surface area and the pore size of microporous carbons from adsorption potential distributions, Langmuir 15, 1442-1448 (1999).
  • [60] J. Choma and M. Jaroniec: A model-independent analysis of nitrogen adsorption isotherms on oxidized active carbons, Colloids Surf. A 189, 103-111 (2001).
  • [61] J. Choma and M. Jaroniec: Adsorption potential distributions for silicas and organosilicas, Adsorpt. Sci. Technol. 25, 573-581 (2007).
  • [62] F. Stoeckli: Dubinin’s theory and its contribution to adsorption science, Russ. Chem. Bull. 50, 2265-2272 (2001).
  • [63] J. Kadlec, The history and present state of Dubinin’s theory of adsorption of vapours and gases on microporous solids, Adsorpt. Sci. Technol. 19, 1-24 (2001).
  • [64] B. McEnaney, Estimation of the dimensions of micropores in active carbons using the Dubinin-Radushkevich equation, Carbon 25, 69-75 (1987).
  • [65] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim. 11, 341-359 (1997).
  • [66] S. Furmaniak, P.A. Gauden, A.P. Terzyk and G. Rychlicki, Water adsorption on carbons – critical review of the most popular analytical approaches, Adv. Colloid. Interface Sci. 137, 82-143 (2008).
  • [67] S. Furmaniak, A.P. Terzyk, R. Gołembiewski, P.A. Gauden and L. Czepirski, Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity, Food Res. Int. 42, 1203-1214 (2009).
  • [68] S. Furmaniak, A.P. Terzyk, G. Rychlicki, M.Wi´sniewski, P.A. Gauden, P. Kowalczyk, K.M. Werengowska and K. Dulska, The system: carbon tetrachloride – closed carbon nanotubes analysed by a combination of molecular simulations, analytical modelling and adsorption calorimetry, J. Colloid Interface Sci. 349, 321-330 (2010).
  • [69] S. Furmaniak, A.P. Terzyk, P.A. Gauden, P.J.F. Harris, M. Wiśniewski and P. Kowalczyk, Simple model of adsorption on external surface of carbon nanotubes – a new analytical approach basing on molecular simulation data, Adsorption 16, 197-213 (2010).
  • [70] S. Furmaniak, A.P. Terzyk, R. Gołembiewski and P.A. Gauden, Surface area of closed carbon nanotubes determined from room temperature measurements of alcohols adsorption, Chem. Phys. Lett. 499, 141-145 (2010).
  • [71] J.K. Garbacz, S. Furmaniak, A.P. Terzyk and M. Grabiec, New model describing adsorption from liquid binary mixtures of nonelectrolytes with limited and unlimited miscibility of components, J. Colloid Interface Sci. 359, 512-519 (2011).
  • [72] S. Furmaniak, A.P. Terzyk and P.A. Gauden, Some remarks on the classification of water vapor sorption isotherms and Blahovec and Yanniotis isotherm equation, Drying Technol. 29, 984-991 (2011).
  • [73] S. Furmaniak, The alternative model of water vapour sorption in porous building materials, Transp. Porous Media 95, 21-23 (2012).
  • [74] W. Van Witzenburg: Density of solid argon at the triple point and concentration of vacancies, Phys. Lett. A 25, 293-294 (1967).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1472b7f7-2504-4c89-be72-cfdd20d552d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.