Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The coal gasification process in this study aimed to increase the quality of low-rank coal (LRC) from lignite type to coal with semi-anthracite and anthracite grades with higher fixed carbon values. The gasification process was carried out at temperatures between 700-900 °C. In the initial stages of the study, the relationship between the increase in gasification temperature with the mass of coal and the gasification process time was investigated. The proximate and ultimate analysis was carried out to determine the characteristics of the raw materials used and the coal char produced from combustion. The analysis results are used to calculate the fuel ratio, where the fuel ratio is a parameter to determine the grade of coal. In addition, an SEM-spot EDS analysis was carried out on the gasified coal solids to ensure the fixed carbon content produced from the above process. The results showed that the gasification process could raise the grade of LRC into char products with semi-anthracite to anthracite, where the fuel ratio reached 10.84. From the product analysis results, the LRC coal gasification results using SEM-EDS showed that carbon reached 98.58%. The remaining inorganic elements in the product are less than 1.5%, such as Al, Si and K.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
78--84
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Mining Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang - Prabumulih Km. 32 Indralaya, South Sumatera 30662, Indonesia
autor
- Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang - Prabumulih Km. 32 Indralaya, South Sumatera 30662, Indonesia
autor
- Industrial Engineering Department of Faculty of Engineering, Universitas Tridinanti Palembang, Jl. Kapten Marzuki No. 2446 Ilir Darat 3, Palembang, South Sumatera 30129, Indonesia
Bibliografia
- 1. Belhachemi M., Khiari B., Jeguirim M., Sepúlveda-Escribano, A. 2019. Characterization of biomass-derived chars. In Char and Carbon Materials Derived from Biomass: Production, Characterization and Applications. https://doi.org/10.1016/B978-0-12-814893-8.00003-1
- 2. Bich N.H., Van Lanh N., Hung B.N. 2017. The composition of Syngas and Biochar produced by Gasifier from Viet Nam Rice Husk. International Journal on Advanced Science, Engineering and Information Technology, 7(6), 2258–2263. https://doi.org/10.18517/ijaseit.7.6.2623
- 3. Chavda R., Mahanwar P. 2021. Effect of inorganic and organic additives on coal combustion: a review. International Journal of Coal Preparation and Utilization, 41(10), 749–766. https://doi.org/10.1080/19392699.2018.1536046
- 4. Chen R., Sheng Q., Dai X., Dong B. 2021. Upgrading of sewage sludge by low temperature pyrolysis: Biochar fuel properties and combustion behavior. Fuel, 300(April), 121007. https://doi.org/10.1016/j.fuel.2021.121007
- 5. Cheng Y., Liu Q., Ren T. 2021. Coal Mechanics. In Coal Mechanics. https://doi.org/10.1007/978-981-16-3895-4
- 6. Deska M., Głodniok M., Ulfig K. 2018. Coal enrichment methods by using microorganisms and their metabolites. Journal of Ecological Engineering, 19(2), 213–220. https://doi.org/10.12911/22998993/82959
- 7. Feng Z., Liu L., Mo W., Wei X., Yuan J., Fan X., Guo W. 2022. Copyrolysis and Cocombustion Performance of Karamay Oily Sludge and Zhundong Subbituminous Coal. https://doi.org/10.1021/acsomega.2c04854
- 8. Holuszko M.E., Leeder W.R., Mackay M., Giroux L., MacPhee T., Ng K.W., Dexter H. 2017. Effects of organic liquids on coking properties of a higherinert Western Canadian coal. Fuel Processing Technology, 155, 225–231. https://doi.org/10.1016/j.fuproc.2016.06.021
- 9. Jančauskas A., Buinevičius K. 2021. Combination of primary measures on flue gas emissions in grate-firing biofuel boiler. Energies, 14(4). https://doi.org/10.3390/en14040793
- 10. Keboletse K.P., Ntuli F., Oladijo O.P. 2021. Influence of coal properties on coal conversion processes-coal carbonization, carbon fiber production, gasification and liquefaction technologies: a review. International Journal of Coal Science and Technology, 8(5), 817–843. https://doi.org/10.1007/s40789-020-00401-5
- 11. Kumar J.A., Kumar K.V., Petchimuthu M., Iyahraja S., Kumar D.V. 2021. Comparative analysis of briquettes obtained from biomass and charcoal. Materials Today: Proceedings, 45, 857–861. https://doi.org/10.1016/j.matpr.2020.02.918
- 12. Lee S., Yoo J., Umar D.F. 2021. Low-rank coal and poly fatty acid distillate characterization as a preparation of coal upgrading palm oil technology. IOP Conference Series: Earth and Environmental Science, 882(1). https://doi.org/10.1088/1755-1315/882/1/012038
- 13. Mallick D., Mahanta P., Moholkar V.S. 2017. Co-gasification of coal and biomass blends: Chemistry and engineering. Fuel, 204, 106–128. https://doi.org/10.1016/j.fuel.2017.05.006
- 14. Meshram P., Purohit B.K., SinhaM.K., Sahu S.K., Pandey B.D. 2015. Demineralization of low grade coal - A review. In Renewable and Sustainable Energy Reviews, 41 745–761. https://doi.org/10.1016/j.rser.2014.08.072
- 15. Moloko K.G., Van Der Merwe J.W. 2021. Investigation of the mechanism for fireside corrosion in coal-fired boilers in South Africa. Journal of the Southern African Institute of Mining and Metallurgy, 121(6), 305–316. https://doi.org/10.17159/2411-9717/951/2021
- 16. Shen Z., Liang Q., Xu J., Liu H., Lin K. 2019. Study on the combustion characteristics of a two-dimensional particle group for coal char and petroleum coke particles. Fuel, 253(April), 501–511. https://doi.org/10.1016/j.fuel.2019.05.042
- 17. Sun Y., Sridhar S., Liu L., Wang X., Zhang Z. 2015. Integration of coal gasification and waste heat recovery from high temperature steel slags: An emerging strategy to emission reduction. Scientific Reports, 5(November), 1–11. https://doi.org/10.1038/srep16591
- 18. Tamošiunas A., Jeguirim M. 2019. Char gasification. In Char and Carbon Materials Derived from Biomass: Production, Characterization and Applications. https://doi.org/10.1016/B978-0-12-814893-8.00006-7
- 19. Triyono S., Suprianto E. 2021. Effect of Using Low Range Calory Coal on Electricity Production Cost and Power Plant Life. 2021 11th International Conference on Power, Energy and Electrical Engineering, CPEEE 2021, 220–225. https://doi.org/10.1109/CPEEE51686.2021.9383405
- 20. Wang C., Gao X., Liu C., Zhou L., Zhao L., Du Y., Che D. 2021. Experimental investigation on physical and chemical properties of solid products from co-pyrolysis of bituminous coal and semi-coke. Journal of the Energy Institute, 99(June), 59–72. https://doi.org/10.1016/j.joei.2021.08.004
- 21. Wang C., Xu G., Gu X., Gao Y., Zhao P. 2021. High value-added applications of coal fly ash in the form of porous materials: A review. Ceramics International, 47(16), 22302–22315. https://doi.org/10.1016/j.ceramint.2021.05.070
- 22. Wang P., Wang C., Yuan M., Wang C., Zhang J., Du Y., Tao Z., Che D. 2020. Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere. Applied Energy, 260(December 2019), 114203. https://doi.org/10.1016/j.apenergy.2019.114203
- 23. Wang X., Zhang J., Bai S., Zhang L., Li Y., Mikulčić H., Chen J., Wang L., Tan H. 2019. Effect of pyrolysis upgrading temperature on particulate matter emissions from lignite semi-char combustion. Energy Conversion and Management, 195(May), 384–391. https://doi.org/10.1016/j.enconman.2019.05.021
- 24. Yang F., Li Z., Liu H., Feng P., Tan H., Zhang S., Lu X. 2021. Emission characteristics of condensable particulate matter and sulfur trioxide from coal-fired power plants. Journal of the Energy Institute, 94, 146–156. https://doi.org/10.1016/j.joei.2020.12.003
- 25. Yi M., Cheng Y., Wang C., Wang Z., Hu B., He X. 2021. Effects of composition changes of coal treated with hydrochloric acid on pore structure and fractal characteristics. Fuel, 294(February), 120506. https://doi.org/10.1016/j.fuel.2021.120506
- 26. Zhuo Y., Xie Z., Shen Y. 2021. Model study of carbonisation of low rank coal briquettes: Effect of briquettes shape. Powder Technology, 385, 120–130. https://doi.org/10.1016/j.powtec.2021.02.071
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-146f809d-7ef4-446e-bc01-807df68d6b38