PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Brillouin backscattering analysis in recent generation of telecom optical fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports on examination of the latest generation of telecom optical fibers for the Brillouin backscattering strain sensor application. Over 30 fibers from 5 different manufactures have been tested in terms of their ability to create a stable and accurate strain sensor. It has been proved that fibers that belong to the same standard, according to ITU-T (International Telecommunication Union), and even if provided by one manufacturer, demonstrate fundamentally different Brillouin backscattering response. It has been shown that unimodal Brillouin spectrum cannot be treated as the main parameter for fiber selection. In order to achieve accurate and reproducible results of strain measurement, it is necessary to perform initial examination of the fibers over the range of laser pulse width.
Czasopismo
Rocznik
Strony
405--416
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Department of Semiconductor and Optoelectronics Devices, 10 Politechniki Ave., 93-590 Lodz, Poland
  • Lodz University of Technology, Department of Semiconductor and Optoelectronics Devices, 10 Politechniki Ave., 93-590 Lodz, Poland
Bibliografia
  • [1] LU P., LALAM N., BADAR M., LIU B., CHORPENING B.T., BURIC M.P., OHODNICKI P.R., Distributed optical fiber sensing: Review and perspective, Applied Physics Reviews 6(4), 2019, 041302, DOI: 10.1063/1.5113955.
  • [2] FORMICA D., SCHENA E., Smart sensors for healthcare and medical applications, Sensors 21(2) 2021, 543, DOI: 10.3390/s21020543.
  • [3] BEDNARSKA K., SOBOTKA P., WOLIŃSKI T.R., ZAKRĘCKA O., POMIANEK W., NOCOŃ A., LESIAK P., Hybrid fiber optic sensor systems in structural health monitoring in aircraft structures, Materials 13(10), 2020, 2249, DOI: 10.3390/ma13102249.
  • [4] MIN R., LIU Z., PEREIRA L., YANG C., SUI Q., MARQUES C., Optical fiber sensing for marine environment and marine structural health monitoring: A review, Optics & Laser Technology 140, 2021, 107082, DOI: 10.1016/j.optlastec.2021.107082.
  • [5] WIJAYA H., RAJEEV P., GAD E., Distributed optical fibre sensor for infrastructure monitoring: Field applications, Optical Fiber Technology 64, 2021, 102577, DOI: 10.1016/j.yofte.2021.102577.
  • [6] GAO L., HAN C., ABDULHAFIDH O., GONG Y., JIN Y., An application of BOTDR to the measurement of the curing of a bored pile, Applied Sciences 11(1), 2021, 418, DOI: 10.3390/app11010418.
  • [7] SHAHPIR R., SABOURI S.G., KHORSANDI A., Laser-based multichannel fiber optic sensor for multipoint detection of corrosion, Optica Applicata 46(1), 2016, pp. 103–115, DOI: 10.5277/oa160110.
  • [8] ALAMANDALA S., SAI PRASAD R.L.N., PANCHARATHI R.K., PAVAN V.D.R., KISHORE P., Study on bridge weigh in motion (BWIM) system for measuring the vehicle parameters based on strain measurement using FBG sensors, Optical Fiber Technology 61, 2021, 102440, DOI: 10.1016/j.yofte.2020.102440.
  • [9] HE X., RAN Z., XIAO Y., XU T., SHEN F., DING Z., HE Z., RAO Y., ZENG D., CHU W., LI X., WEI Y., Three-dimensional force sensors based on all-fiber Fabry–Perot strain sensors, Optics Communications 490, 2021, 126694, DOI: 10.1016/j.optcom.2020.126694.
  • [10] MUANENDA Y., OTON C., PASQUALE F., Application of Raman and Brillouin scattering phenomena in distributed optical fiber sensing, Frontiers in Physics 7, 2019, 155, DOI: 10.3389/fphy.2019.00155.
  • [11] KOBYAKOV A., SAUER M., CHOWDHURY D., Stimulated Brillouin scattering in optical fibers, Advances in Optics and Photonics 2(1), 2010, pp. 1–59, DOI: 10.1364/AOP.2.000001.
  • [12] THÉVENAZ L., Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives, Frontiers of Optoelectronics in China 3, 2010, pp. 13–21, DOI: 10.1007/s12200-009-0086-9.
  • [13] LUO L., SEKIYA H., SOGA K., Dynamic distributed fiber optic strain sensing on movement detection, IEEE Sensors Journal 19(14), 2019, pp. 5639–5644, DOI: 10.1109/JSEN.2019.2907889.
  • [14] BAI Q., WANG Q., WANG D., WANG Y., GAO Y., ZHANG H., ZHANG M., JIN B., Recent advances in Brillouin optical time domain reflectometry, Sensors 19(8), 2019, 1862, DOI: 10.3390/s19081862.
  • [15] SHENG L., LI L., LANG J., LI P., DONG J., YUAN M., YAN J., LIU Z., Research on the simultaneous distributed measurement of temperature and strain based on Brillouin scattering effect in communication optical fiber, Proc. SPIE 11607, Optics Frontiers Online 2020: Distributed Optical Fiber Sensing Technology and Applications, 2021, 1160702, DOI: 10.1117/12.2582681.
  • [16] LAKOMSKI M., TOSIK G., NIEDZIELSKI P., Optical fiber sensor for PVC sheet piles monitoring, Electronics 10(13), 2021, 1604, DOI: 10.3390/electronics10131604.
  • [17] ZOU W., HE Z., HOTATE K., Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber, IEEE Photonics Technology Letters 22(8), 2010, pp. 526–528, DOI: 10.1109/LPT.2010.2041922.
  • [18] LIU X., BAO X., Brillouin spectrum in LEAF and simultaneous temperature and strain measurement, Journal of Lightwave Technology 30(8), 2012, pp. 1053–1059, DOI: 10.1109/JLT.2011.2168193.
  • [19] ZHANG Z., LU Y., PAN Y., BAO X., CHEN L., Trench-assisted multimode fiber used in Brillouin optical time domain sensors, Optics Express 27(8), 2019, pp. 11396–11405, DOI: 10.1364/OE.27.011396.
  • [20] HU L., SHENG L., YAN J., LI L., YUAN M., SUN F., NIAN F., LI L., LIU J., ZHOU S., LIU Z., Simultaneous measurement of distributed temperature and strain through Brillouin frequency shift using a common communication optical fiber, International Journal of Optics, Vol. 2021, 2021, 6610674, DOI: 10.1155/2021/6610674.
  • [21] XING C., KE C., GUO Z., YANG K., WANG H., ZHONG Y., LIU D., Distributed multi-parameter sensing utilizing Brillouin frequency shifts contributed by multiple acoustic modes in SSMF, Optics Express 26(22), 2018, pp. 28793–28807, DOI: 10.1364/OE.26.028793.
  • [22] NIKLES M., THEVENAZ L., ROBERT P.A., Brillouin gain spectrum characterization in single-mode optical fibers, Journal of Lightwave Technology 15(10), 1997, pp. 1842–1851, DOI: 10.1109/50.633570.
  • [23] AGHAMKAR P., SEN P.K., Effect of doping on stimulated Brillouin scattering in semiconductors, Journal of Chemical Sciences 102, 1990, pp. 585–592, DOI: 10.1007/BF03040785.
  • [24] HORIGUCHI T., KURASHIMA T., TATEDA M., Tensile strain dependence of Brillouin frequency shift in silica optical fibers, IEEE Photonics Technology Letters 1(5), 1989, pp. 107–108, DOI: 10.1109/68.34756.
  • [25] ARUNSUNDARAM B., PARIVALLAL, S., KESAVAN, K., Studies on distributed Brillouin scattering technique for monitoring of lifeline structures, Journal of Scientific & Industrial Research (India) 80(5), 2021, pp. 420–427, DOI: 10.56042/jsir.v80i05.41784.
  • [26] CHO S.-B., KIM Y.-G., HEO J.-S., LEE J.-J., Pulse width dependence of Brillouin frequency in single mode optical fibers, Optics Express 13(23), 2005, pp. 9472–9479, DOI: 10.1364/OPEX.13.009472.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-146d8cfa-6f34-4608-832e-e51b1f09378f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.