Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Cleaning pigs made of highly elastic materials are used to remove contaminants from industrial gas pipelines. To ensure the movement of the pig in normal operation and narrow sections of the pipeline, it is necessary to generate the required gas pressure in the pig space. The study aims to establish the analytical conditions for the movement of a deformable pig in a cylindrical channel without stopping. Design/methodology/approach: A one-dimensional quasi-static model has been developed to analyse the frictional interaction of a moving deformable rod with a cylindrical pipe wall under conditions of uniform radial tightness. The normal contact is assumed to be dense, with no interfacial gas flow along the pig. Findings: Based on the solution of the formulated contact problem, the influence of frontal resistance, tension, friction, modulus of elasticity of the material and geometric dimensions of the rod on its stress state and on the value of pressure behind the pig required for the pig to pass through the pipeline without stopping is investigated. It is shown that an increase in the value of each factor leads to an increase in the driving gas pressure in the space behind the pig. Research limitations/implications: In the future, developing the proposed approach for the analytical modelling of pig motion in a pipe with variable narrowing is advisable. Practical implications: Recommendations for the design of deformable pigs for efficient gas pipeline cleaning are given. Originality/value: In analytical form, the dependences of the driving pressure on the key geometric and mechanical parameters of the process were found.
Wydawca
Rocznik
Tom
Strony
67--76
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
- Branch Ukrainian Scientific Research Institute of Natural Gases Joint Stock Company “Ukrgasvydobuvannya”, 20 Himnaziina Naberezhna str., Kharkiv, Ukraine
autor
- Laboratory of Modeling of Damping Systems, Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, National Academy of Sciences of Ukraine, 3 Mykytynetska Str., 76002 Ivano-Frankivsk, Ukraine
autor
- Department of Oil and Gas Pipelines and Storage Facilities, Institute of Petroleum Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska str., Ivano-Frankivsk, Ukraine
autor
- Department of Construction and Civil Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Str., 76019 Ivano-Frankivsk, Ukraine
Bibliografia
- [1] Z. Yang, Q. Xiang, Y. He, S. Peng, M. Faber, E. Zio, L. Zuo, H. Su, J. Zhang, Resilience of Natural Gas Pipeline System: A Review and Outlook, Energies 16/17 (2023) 6237. DOI: https://doi.org/10.3390/en16176237
- [2] M. Dutkiewicz, A. Velychkovych, A. Andrusyak, I. Petryk, A. Kychma, Analytical Model of Interaction of an Oil Pipeline with a Support of an Overpass Built in a Mountainous Area, Energies 16/11 (2023) 4464. DOI: https://doi.org/10.3390/en16114464
- [3] M. Azzam, Failure Analysis of Pipelines in the Oil and Gas Industry, in: S. Rushd, M.A. Ismail (eds), Pipeline Engineering – Design, Failure, and Management, IntechOpen, London, UK, 2023. DOI: https://doi.org/10.5772/intechopen.108140
- [4] Y. Doroshenko, V. Zapukhliak, K. Poliarush, R. Stasiuk, S. Bagriy, Development of Trenchless Technology of Reconstruction of “Pulling pig P” Pipeline Communications, Eastern-European Journal of Enterprise Technologies 2/1(98) (2019) 28-38. DOI: https://doi.org/10.15587/1729-4061.2019.164351
- [5] D. Ochs, K. Wiertz, S. Bußmann, K. Kersting, D.S. Dhami, Effective Risk Detection for Natural Gas Pipelines Using Low-Resolution Satellite Images, Remote Sensing 16/2 (2024) 266. DOI: https://doi.org/10.3390/rs16020266
- [6] J.E. Naranjo, G. Caiza, R. Velastegui, M. Castro, A. Alarcon-Ortiz, M.V. Garcia, A Scoping Review of Pipeline Maintenance Methodologies Based on Industry 4.0, Sustainability 14/24 (2022) 16723. DOI: https://doi.org/10.3390/su142416723
- [7] M. Dutkiewicz, T. Dalyak, I. Shatskyi, T. Venhrynyuk, A. Velychkovych, Stress Analysis in Damaged Pipeline with Composite Coating, Applied Sciences 11/22 (2021) 10676. DOI: https://doi.org/10.3390/app112210676
- [8] Z. Yang, Q. Xiang, Y. He, S. Peng, M.H. Faber, E. Zio, L. Zuo, H. Su, J. Zhang, Resilience of Natural Gas Pipeline System: A Review and Outlook, Energies 16/17 (2023) 6237. DOI: https://doi.org/10.3390/en16176237
- [9] I.P. Shats’kyi, A.B. Struk, Stressed State of Pipeline in Zones of Soil Local Fracture, Strength of Materials 41/5 (2009) 548-553. DOI: https://doi.org/10.1007/s11223-009-9165-9
- [10] J. Zhang, X. Gu, Y. Zhou, Y. Wang, H. Zhang, Y. Zhang, Mechanical Properties of Buried Gas Pipeline under Traffic Loads, Processes 11/11 (2023) 3087. DOI: https://doi.org/10.3390/pr11113087
- [11] E.I. Kryzhanivs’kyi, V.P. Rudko, I.P. Shats’kyi, Estimation of Admissible Loads upon a Pipeline in the Zone of Sliding Ground, Materials Science 40/4 (2004) 547-551. DOI: https://doi.org/10.1007/s11003-005- 0076-z
- [12] I. Shatskyi, M. Makoviichuk, M. Vaskovkyi, Transversal Straining of Pressurized Pipeline Caused by Vibration of Damaged Foundation, in: J. Awrejcewicz (eds), Perspectives in Dynamical Systems I ‒ Applications. DSTA 2021, Springer Proceedings in Mathematics and Statistics, vol 453, Springer, Cham, 2024, 501-508. DOI: https://doi.org/10.1007/978-3-031-56492-5_36
- [13] V.B. Volovetskyi, Ya.V. Doroshenko, S.M. Stetsiuk, S.V. Matkivskyi, O.M. Shchyrba, Y.M. Femiak, G.M. Kogut, Development of Foam-breaking Measures After Removing Liquid Contamination From Wells and Flowlines by Using Surface-active Substances, Journal of Achievements in Materials and Manufacturing Engineering 114/2 (2022) 67-80. DOI: https://doi.org/10.5604/01.3001.0016.2157
- [14] V. Volovetskyi, Ya. Doroshenko, O. Karpash, O. Shchyrba, S. Matkivskyi, O. Ivanov, H. Protsiuk, Experimental Studies of Efficient Wells Completion in Depleted Gas Condensate Fields by Using Foams, Strojnícky časopis ‒ Journal of Mechanical Engineering 72/2 (2022) 219-238. DOI: https://doi.org/10.2478/scjme-2022-0031
- [15] V.B. Volovetskyi, Y.L. Romanyshyn, P.M. Raiter, M.D. Serediuk, O.M. Shchyrba, S.V. Matkivskyi, O.O. Filipchuk, Study of gas gathering pipelines hydraulic efficiency in gathering facilities of depleted fields, Journal of Achievements in Materials and Manufacturing Engineering 122/2 (2024) 69-85. DOI: https://doi.org/10.5604/01.3001.0054.4833
- [16] V.B. Volovetskyi, Ya.V. Doroshenko, G.M. Kogut, A.P. Dzhus, I.V. Rybitskyi, J.I. Doroshenko, O.M. Shchyrba, Investigation of gas gathering pipelines operation efficiency and selection of improvement methods, Journal of Achievements in Materials and Manufacturing Engineering 107/2 (2021) 59-74. DOI: https://doi.org/10.5604/01.3001.0015.3585
- [17] V.B. Volovetskyi, Ya.V. Doroshenko, S.V. Matkivskyi, P.M. Raiter, O.M. Shchyrba, S.M. Stetsiuk, H.Ya. Protsiuk, Development of Methods for Predicting Hydrate Formation in Gas Storage Facilities and Measures for Their Prevention and Elimination, Journal of Achievements in Materials and Manufacturing Engineering 117/1 (2023) 25-41. DOI: https://doi.org/10.5604/01.3001.0053.5955
- [18] V.B. Volovetskyi, Ya.V. Doroshenko, A.O. Bugai, G.M. Kogut, P.M. Raiter, Y.M. Femiak, R.V. Bondarenko, Developing measures to eliminate of hydrate formation in underground gas storages, Journal of Achievements in Materials and Manufacturing Engineering 111/2 (2022) 64-77. DOI: https://doi.org/10.5604/01.3001.0015.9996
- [19] S. Razvarz, R. Jafari, A. Gegov, A Review on Different Pipeline Defect Detection Techniques, in: Flow Modelling and Control in Pipeline Systems, Studies in Systems, Decision and Control, vol 321, Springer, Cham, 2021, 25-57. DOI: https://doi.org/10.1007/978- 3-030-59246-2_2
- [20] J. Chen, X. Luo, L. He, H. Liu, L. Lu, Y. Lü, D. Yang, An Improved Solution to Flow Assurance in Natural Gas Pipeline Enabled by a Novel Self-Regulated Bypass Pig Prototype: An Experimental and Numerical Study, Journal of Natural Gas Science and Engineering 107 (2022) 104776. DOI: https://doi.org/10.1016/j.jngse.2022.104776
- [21] S.M. Stetsiuk, Ya.V. Doroshenko, Yu.I. Doroshenko, O.O. Filipchuk, V.Ya. Grudz, Experimental Investigation of the Movement Patterns and Deformation of the Pigs When Passing Through a Pipe Elbow and Reducer, Journal of Achievements in Materials and Manufacturing Engineering 124/2 (2024) 49-64. DOI: https://doi.org/10.5604/01.3001.0054.7759
- [22] R.A. Patricio, R.M. Baptista, F.B. Rachid, G.C. Bodstein, Numerical Simulation of Pig Motion in Gas and Liquid Pipelines Using the Flux-Corrected Transport Method, Journal of Petroleum Science and Engineering 189 (2020) 106970. DOI: https://doi.org/10.1016/j.petrol.2020.106970
- [23] M. Borregales, R. Ensalzado, M. Asuaje, CFD Analysis of Phenomena Attributed to Pigging Run in a Straight Pipeline, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Vol. 7: Fluids Engineering Systems and Technologies, Montreal, Quebec, Canada, 2014, V007T09A082. DOI: https://doi.org/10.1115/IMECE2014-37452
- [24] H. He, Z. Liang, Simulation of Pigging with a Brake Unit in Hilly Gas Pipeline, Journal of Applied Fluid Mechanics 12/5 (2019) 1497-1509. DOI: https://doi.org/10.29252/jafm.12.05.29869
- [25] S. Chen, Y. Zhang, X. Wang, K. Teng, Y. Gong, Y. Qu, Numerical Simulation and Experiment of the Gas- Liquid Two-Phase Flow in the Pigging Process Based on Bypass State, Ocean Engineering 252/11 (2022) 111184. DOI: https://doi.org/10.1016/j.oceaneng.2022.111184
- [26] A. Rastogi, Y. Fan, Experimental and Modeling Study of Onset of Liquid Accumulation, Journal of Natural Gas Science and Engineering 73 (2020) 103064. DOI: https://doi.org/10.1016/j.jngse.2019.103064
- [27] J. Chen, X. Luo, H. Zhang, L. He, J. Chen, K. Shi, Experimental Study on Movement Characteristics of Bypass Pig, Journal of Natural Gas Science and Engineering 59 (2018) 212-223. DOI: https://doi.org/10.1016/j.jngse.2018.08.023
- [28] M.H.W. Hendrix, C.M. Graafland, R.A.J. van Ostayen, Frictional Forces for Disc-Type Pigging of Pipelines, Journal of Petroleum Science and Engineering 171 (2018) 905-918. DOI: https://doi.org/10.1016/j.petrol.2018.07.076
- [29] S. Chen, L. Xia, X. Wang, K. Teng, Y. Zhang, M. Zhang, Y. Gong, Motion Law and Mechanical Properties of PIGs When Passing Through a Pipe Bend, Machines 10/10 (2022) 963. DOI: https://doi.org/10.3390/machines10100963
- [30] S. Kim, J. Jeong, K. Yoo, H. Yoo, Y. Seo, Experimental Investigation on Speed Excursion of PIG Due to Friction Variation in Natural Gas Pipeline, Journal of Natural Gas Science and Engineering 104 (2022) 104659. DOI: https://doi.org/10.1016/j.jngse.2022.104659
- [31] X.-X. Zhu, C.-M. Fu, Y.-T. Wang, S.-M. Zhang, Experimental Research on the Contact Force of the Bi-Directional Pig in Oil and Gas Pipeline, Petroleum Science 20/1 (2023) 474-481. DOI: https://doi.org/10.1016/j.petsci.2022.08.021
- [32] L. Zhang, J. Zhou, H. He, Modeling and Simulation of Pigging for a Gas Pipeline Using a Bypass Pig, Mathematical Problems in Engineering 2020/1 (2020) 2047352. DOI: https://doi.org/10.1155/2020/2047352
- [33] C. Liu, Y. Cao, J. Chen, R. He, J. Xin, S. Wu, Research on Mechanical Behaviors of Submarine Pipeline Inspection Gauges in the Elbow: FSI Simulation and Mathematic Modeling, Ocean Engineering 273 (2023) 114042. DOI: https://doi.org/10.1016/j.oceaneng.2023.114042
- [34] V.L. Popov, Contact Mechanics and Friction: Physical Principles and Applications, 1st Edition, Springer- Verlag, Berlin, Heidelberg, 2010. DOI: https://doi.org/10.1007/978-3-642-10803-7
- [35] A.A. Bedzir, I.P. Shatskii, V.M. Shopa, Nonideal Contact in a Composite Shell Structure with a Deformable Filler, International Applied Mechanics 31/5 (1995) 351-354. DOI: https://doi.org/10.1007/BF00846842
- [36] I.Yo. Popadyuk, I.P. Shatskyi, V.M. Shopa, Mechanics of Frictional Contact of Shells with Deformable Filler, Fakel, Ivano-Frankivs’k, 2003 (in Ukrainian).
- [37] І.Yo. Popadyuk, І.P. Shats’kyi, V.М. Shopa, A.S. Velychkovych, Frictional interaction of a cylindrical shell with deformable filler under nonmonotonic loading, Journal of Mathematical Sciences 215 (2016) 243-253. DOI: https://doi.org/10.1007/s10958-016- 2834-x
- [38] M. Dutkiewicz, A. Velychkovych, I. Shatskyi, V. Shopa, Efficient Model of the Interaction of Elastomeric Filler with an Open Shell and a Chrome-Plated Shaft in a Dry Friction Damper, Materials 15/13 (2022) 4671. DOI: https://doi.org/10.3390/ma15134671 [
- 39] I. Shatskyi, A. Velychkovych, Increase of compliance of shock absorbers with cut shells, IOP Conference Series: Materials Science and Engineering 564 (2019) 012072. DOI: https://doi.org/10.1088/1757-899X/564/1/012072
- [40] I.P. Shats’kyi, V.M. Shopa, A.S. Velychkovych, Development of Full-Strength Elastic Element Section with Open Shell, Strength of Materials 53/4 (2021) 277-282. DOI: https://doi.org/10.1007/s11223-021- 00286-y
- [41] I. Shatskyi, A. Velychkovych, Analytical Model of Structural Damping in Friction Module of Shell Shock Absorber Connected to Spring, Shock and Vibration 2023/1 (2023) 4140583. DOI: https://doi.org/10.1155/2023/4140583
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1467f05d-ef0a-47b1-8095-c810ebe9d8d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.