Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Semiconducting GaN can realize high performance electronic and power devices owing to its high electron mobility and thermal conductivity where good metal-semiconductor contact is prerequisite. In this work, using thermal atomic layer deposition (ALD), ZnO interlayer was grown at 80°C on GaN and the Pt/ZnO/GaN heterojunctions were electrically characterized. The analyses on the current-voltage (I-V) and capacitance (C-V) data showed that the forward I-V conduction was involved with the inhomogeneous Schottky barrier. The higher density of interface states from I-V data than that from C-V data was attributed to nonuniform distribution of interface states. In addition, high density of interface states caused localized high electric field, caused higher Poole Frenkel emission coefficients than the theoretical one.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
459--462
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wzory
Twórcy
autor
- Seoul National University of Science and Technology, Department of Visual Optics, Seoul 01811, Korea
autor
- Seoul National University of Science and Technology, Department of Material Science and Engineering, Seoul 01811, Korea
autor
- Seoul National University of Science and Technology, Department of Material Science and Engineering, Seoul 01811, Korea
Bibliografia
- [1] M. Borysiewicz, E. Kamińska, M. Myśliwiec, M. Wzorek, A. Kuchuk, A. Barcz, E. Dynowska, M. Forte-Poisson, C. Giesen, A. Piotrowska, Fundamentals and practice of metal contacts to wide band gap semiconductor devices. Cryst. res. Technol. 47, 261 (2012). DOI: https://doi.org/10.1002/crat.201100490
- [2] F. Roccaforte, P. Fiorenza, G. Greco, R. Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng. 187-188, 66 (2018). DOI: https://doi.org/10.1016/j.mee.2017.11.021
- [3] S. Pearton, J. Zolper, R. Shul, F. Ren, GaN: Processing, defects, and devices. J. Appl. Phys. 86, 1 (1999). DOI: https://doi.org/10.1063/1.371145
- [4] D. Segev, C. Van de Walle, Origins of Fermi-level pinning on GaN and InN polar and nonpolar surfaces. Europhys. Lett. 76, 305 (2006). DOI: https://doi.org/10.1209/epl/i2006-10250-2
- [5] S. Wahid, N. Chowdhury, Md Alam, T. Palacios, Barrier heights and Fermi level pinning in metal contacts on p-type GaN. Appl. Phys. Lett. 116, 213506 (2020). DOI: https://doi.org/10.1063/5.0010699
- [6] H. Kim, M. Jung, B. Choi, Modification of contact properties in Pt/n-GaN Schottky junctions with ZnO and TiO2/ZnO interlayers. Phys. Scr. 97, 035805 (2022). DOI: https://doi.org/10.1088/1402-4896/ac5085
- [7] V. Janardhanam, I. Jyothi, S. Lee, V. Reddy, C. Choi, Rectifying and breakdown voltage enhancement of Au/n-GaN Schottky diode with Al-doped ZnO films and its structural characterization. Thin Solid Films, 676, 125 (2019). DOI: https://doi.org/10.1016/j.tsf.2019.03.007
- [8] T. Tynell. M. Karppinen, Atomic layer deposition of ZnO: a review. Semicond. Sci. Technol. 29, 043001 (2014). DOI: https://doi.org/10.1088/0268-1242/29/4/043001
- [9] M. Cho, J. Go, B. Choi, Recent studies on area selective atomic layer deposition of elemental metals. J. Powder Mater. 30, 156 (2023). DOI: https://doi.org/10.4150/KPMI.2023.30.2.156
- [10] S. Jeon, S. Bang, S. Lee, S. Kwon, W. Jeong, H. Jeon, H. Chang, H. Park, Structural and electrical properties of ZnO thin films deposited by atomic layer deposition at low temperatures. J. Electrochem. Soc. 155, H738 (2008). DOI: https://doi.org/10.1149/1.2957915
- [11] J. Park, Y. Weon, M. Jung, B. Choi, Structural, electrical, and optical properties of ZnO films grown by atomic layer deposition at low temperature. Arch. Metall. Mater. 67, 1503 (2022). DOI: https://doi.org/10.24425/amm.2022.141082
- [12] D. Choi, S. Kim, J. Lee, K. Chung, J. Park, A study of thin film encapsulation on polymer substrate using low temperature hybrid ZnO/Al2O3 layers atomic layer deposition. Curr. Appl. Phys. 12, S19 (2012). DOI: https://doi.org/10.1016/j.cap.2012.02.012
- [13] R. Tung, J. Sullivan, E. Schrey, On the inhomogeneity of Schottky barriers. Mater. Sci. Eng. B 14, 266 (1992). DOI: https://doi.org/10.1016/0921-5107(92)90309-W
- [14] J. Werner, H. Gijttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522 (1991). DOI: https://doi.org/10.1063/1.347243
- [15] Q. Feng, Z. Feng, Z. Hu, X. Xing, G. Yan, J. Zhang, Y. Xu, X. Lian, Y. Hao, Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode. Appl. Phys. Lett. 112, 072103 (2018). DOI: https://doi.org/10.1063/1.5019310
- [16] S. Sze, Physics of Semiconductor devices. Wiley, New York (1981).
- [17] P. Reddy, V. Janardhanam, H. Lee, K. Shim, S. Lee, V. Reddy, C. Choi, Schottky barrier parameters and low-frequency noise characteristics of Au/Ni contact to n-Type β-Ga2O3 . J. Electron. Mater. 49, 297 (2020). DOI: https://doi.org/10.1007/s11664-019-07728-z
- [18] H. Card, E. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D: Appl. Phys. 4, 1589 (1971). DOI: https://doi.org/10.1088/0022-3727/4/10/319
- [19] J. Lin, S. Banerjee, J. Lee, C. Teng, Soft breakdown in titanium-silicided shallow source/drain junctions. IEEE Electron Dev. Lett. 11, 191 (1990). DOI: https://doi.org/10.1109/55.55246
- [20] H. Zhang, E. Miller, E. Yu, Analysis of leakage current mechanisms in Schottky contacts to gan and Al0.25Ga0.75N/GaN grown by molecular-beam epitaxy. J. Appl. Phys. 99, 023703 (2006). DOI: https://doi.org/10.1063/1.2159547
- [21] R. Gould, C. Bowler, D.C. Electrical properties of evaporated thin films of CdTe. Thin Solid Films 164, 281 (1998). DOI: https://doi.org/10.1016/0040-6090(88)90150-2
Uwagi
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(NRF- 2022M3F3A2A01044952).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1464fe5c-c069-466e-a82c-8dd9c7022fbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.