PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on Microstructure and Mechanical Properties of Friction Stir Welding Joints of In-Situ Al3Zr/AA6082 Particle-Reinforced Aluminum Matrix Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the Al-K2ZrF6 reaction system was used to prepare in-situ Al3Zr/AA6082 particle-reinforced aluminum matrix composites by electromagnetic stirring melt reaction method, and the friction stir welding technology was used to weld the plate. The microstructure and mechanical properties of the welded joints were studied when the rotating speed was 14000 rpm and the welding speed was 30, 50 and 70 mm/min respectively. The results show that the weld forming quality and tensile properties of the FSW joints with welding parameters of 14000 rpm and 50 mm/min are the best, the tensile strength is 142(±0.5) MPa and the elongation is 8.2%. SEM analysis shows that the particle size of the reinforcing phase in the base metal is refined to about 5-10 μm, while that in the NZ is about 1-5 μm. The grain size in the HAZ is about 20-30 μm and in the NZ is about 5-10 μm. EBSD analysis shows that the proportion of low-angle grain boundary in the NZ is 59.7% and of recrystallized grain structure is 23.65%, while the proportion of small-angle grain boundary in the HAZ is 24.35% and of recrystallized grain structure is 37.18%. It provides theoretical and experimental basis for the forming and application of friction stir welding of the composite.
Twórcy
autor
  • Jiangsu University of Science and Technology, School of Materials Science and Engineering, Zhenjiang 212000, China
autor
  • Jiangsu University of Science and Technology, School of Materials Science and Engineering, Zhenjiang 212000, China
autor
  • Jiangsu University of Science and Technology, School of Materials Science and Engineering, Zhenjiang 212000, China
  • Jiangsu University of Science and Technology, School of Materials Science and Engineering, Zhenjiang 212000, China
autor
  • Jiangsu University of Science and Technology, School of Materials Science and Engineering, Zhenjiang 212000, China
autor
  • Jiangsu University of Science and Technology, School of Materials Science and Engineering, Zhenjiang 212000, China
  • Phisico-Technological Institute of Metals and Alloys of the National Academy of Sciens of Ukraine, Kyiv, Ukraine
  • Phisico-Technological Institute of Metals and Alloys of the National Academy of Sciens of Ukraine, Kyiv, Ukraine
Bibliografia
  • [1] A. Hadadzadeh, M. M. Ghaznavi, A. H. Kokabi, HAZ softening behavior of strain hardened A1-6.7Mg alloy welded by GMAW and pulsed GMAW processes, The International Journal of Advanced Manufacturing Technology 92 (5-8), 2255-2265 (2017). DOI: https://doi.org/10.1007/s00170-017-0318-x
  • [2] G.Q. Chen, J.B. Liu, X. Shu, Research progress and analysis of aluminum alloy welding, Welding & Joining (09), 7, 12-68 (2017).
  • [3] A. Amini, P. Asadi, P. Zolghadr, Friction stir welding applications in industry. Advances in friction stir welding and processing, 2014 Woodhead.
  • [4] H. Li, P.Y. Xu, Y.P. Qiao, Microstructure and Mechanical Properties of Ultrahigh-Speed Friction-Stir-Welded Joints of In Situ Al3Zr Particle-Reinforced Aluminum Matrix Composite Sheets. Adv. Eng. Mater. 23 (8), 2100295 (2021). DOI: https://doi.org/10.1002/adem.202100295
  • [5] G.K. Padhy, C.S. Wu, S. Gao, Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review, J. Mater. Sci. Technol. 34, 1-38 (2018). DOI: https://doi.org/10.1016/j.jmst.2017.11.029
  • [6] P. Prakash, S.K. Jha, S.P. Lal, Numerical investigation of stirred zone shape and its effect on mechanical properties in friction stir welding process, Welding World. 63, 1531-1546 (2019). DOI: https://doi.org/10.1007/s40194-019-00787-0
  • [7] A.R. Rose, K. Manisekar, V. Balasubramanian, Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy, Transactions of Nonferrous Metals Society of China. 21 (5), 974-984 (2011). DOI: https://doi.org/10.1016/s1003-6326(11)60809-1
  • [8] X.J. Wang, L. Feng, J.T. Wu, X.H. Xiao, B.B. Su, Study of Bending Strength and Fracture Behavior of ZK60 Mg Alloy Welded by Friction Stir Welding, Materials Reports 34 (04), 4083-4086 (2020).
  • [9] Q.S. Ma, Y.J. Li, J. Wang, Microstructure characteristic and shear strength of wideband laser clad Ni60 composite coatings reinforced with WC particle, Transactions of the China Welding Institution 37 (12), 49-52+131 (2016).
  • [10] G. Cam, S. Mistikoglu, Recent Developments in Friction Stir Welding of Al-alloys, Journal of Materials Engineering & Performance 23 (6), 1936-1953 (2014). DOI: https://doi.org/10.1007/s11665-014-0968-x
  • [11] O.S. Salih, H. Ou, W. Sun, D.G. McCartney, A review of friction stir welding of aluminium matrix composites, Mater. Des. 86, 61-71 (2015). DOI: https://doi.org/10.1016/j.matdes.2015.07.071
  • [12] L. Jiao, F. Li, Y.T. Zhao, Microstructure and tribological behavior of in situ ZrB2/A356 composites prepared under magnetic field, Surf. Topogr.: Metrol. Prop. 9 (1), 015026 (2021). DOI: https://doi.org/10.1088/2051-672X/abe720
  • [13] S.Y. Yang, H.R. Zhong, Y.S. Tao, Microstructure and Properties of Friction Stir Welded Joints of Magnesium Rare Earth Alloy, Chinese Journal of Rare Metals 37 (01), 33-37 (2013).
  • [14] H.Y. Zhou. Research on the Friction Stir Welding of Al/Mg Dissmillar Alloy. Master’s thesis. Nanjing University of Science & Technology, Nanjing, Jiangsu, June.
  • [15] Roosvel Soto-Díaz, Anderson Sandoval-Amador, Jimy Unfried Silgado, The International Journal of Advanced Manufacturing Technology (2021). DOI: https://doi.org/10.1007/s00170-021-07373-z (in press).
  • [16] S.D. Ji, Q. Wen, L. Ma, Microstructure along thickness direction of fricyion stir welded TC4 titanium alloy joint, Acta Metallurgica Sinica 51 (11), 1391-1399 (2015).
  • [17] H. Li, P.Y. Xu, L. Jiao, Surface wear behavior and strengthening mechanism of Al3Zr particle reinforced aluminum matrix composites prepared in situ, Surf. Topogr.: Metrol. Prop. 7 (4), 045013 (2019). DOI: https://doi.org/10.1088/2051-672X/ab4145
  • [18] Y.H. Sun, L. Du, Development and Application of Friction Stir Welding, New Technology & New Process (06), 70-73 (2011).
  • [19] S. Ji, Y. Wang, Z. Li, Effect of Plate Thickness on Tensile Property of Ti-6Al-4V Alloy Joint Friction Stir Welded Below β-Transus Temperature, High Temperature Materials and Processes 36 (7), 693-699 (2017). DOI: https://doi.org/10.1515/htmp-2016-0012
  • [20] G. Çam, G. İpekoğlu, Recent developments in joining of aluminum alloys, Int. J. Adv. Manuf. Technol. 91, 1851-1866 (2017). DOI: https://doi.org/10.1007/s00170-016-9861-0
  • [21] A. Sasikumar, S. Gopi, G. Mohan Dhanesh, Effect of welding speed on mechanical properties and corrosion resistance rates of filler induced friction stir welded AA6082 and AA5052 joints, Materials Research Express 8 (6), 066531 (2021). DOI: https://doi.org/10.1088/2053-1591/AC0C9E
  • [22] L. Jiao, F. Li, Y.T. Zhao, Surface Friction and Wear Behavior of In Situ AlB2 Particle-Reinforced A356 Composites, J. of Materi Eng and Perform. (2022). DOI: https://doi.org/10.1007/s11665-022-06626-6
  • [23] Hassan Khairia Salman, Abbass Muna Khethier, Mohammed Mohsin Talib, Effect of Surface Finishing on Microstructure and Corrosion Behavior of Friction Stir Welded Joints For Dissimilar Aluminum Alloys (AA2024-T3 with AA6061-T6), IOP Conference Series: Materials Science and Engineering 1105 (1), 012047 (2021). DOI: https://doi.org/10.1088/1757-899x/1105/1/012047
  • [24] S. Mironov, T. Onuma, Y.S. Sato, Microstructure evolution during friction stir welding of AZ31 magnesium alloy, Acta Materialia 100, 301-312 (2015). DOI: https://doi.org/10.1016/j.actamat.2015.08.066
  • [25] W.F. Xu, J.H. Liu, D.L. Chen, Influence of Test Temperature on the Tensile Properties along the Thickness in a Friction Stir Welded Aluminum Alloy, Journal of Materials Science & Technology 31 (9), 953-961 (2015). DOI: https://doi.org/10.1016/j.jmst.2015.07.005
  • [26] N. Kashaev, V. Ventzke, G. Çam, Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications, J. Manuf. Processes 36, 571-600 (2018). DOI: https://doi.org/10.1016/j.jmapro.2018.10.005
  • [27] P. Prabhuraj, S. Rajakumar, Experimental investigation on corrosion behavior of friction stir welded AA7075-T651 aluminium alloy under 3.5% wt NaCl environment, Materials Today: Proceedings 45, 5878-5885 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.08.422
  • [28] H. Li, Y.P. Qiao, S.B. Lu, J. of Mater. Eng. and Perform. (2022), DOI: https://doi.org/10.1007/s11665-022-06652-4 (in press).
  • [29] R. Ye, J.D. Yang, X.Y. Peng, Microstructure, mechanical properties and localized corrosion property of friction stir welded joint of Al-Zn-Mg-Sc-Zr alloy, The Chinese Journal of Nonferrous Metals 25 (10), 2656-2665 (2015).
  • [30] J. Zhang, P. Upadhyay, Y. Hovanski, D.P. Field, High-speed friction stir welding of AA7075-T6 sheet: microstructure, mechanical properties, micro-texture, and thermal history, Metall. Mater. Trans. A. 49, 210-222 (2018). DOI: https://doi.org/10.1007/s11661-017-4411-4
  • [31] C. Gao, Z. Zhu, J. Han, H. Li, Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al-Li alloy, Mater. Sci. Eng. A. 639, 489-499 (2015). DOI: https://doi.org/10.1016/j.msea.2015.05.038
  • [32] C. Yang, J.F. Zhang, G.N. Ma, Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates, Journal of Materials Science & Technology 41, 105-116 (2020). DOI: https://doi.org/10.1016/j.jmst.2019.10.005
  • [33] L.Z. Zhao, M. Yang, Study on particle reinforced aluminum matrix composites, Hot Working Technology, 40 (20), 107-110 (2011). DOI: https://doi.org/10.3969/j.issn.1001-3814.2011.20.033
  • [34] J. Hashim, L. Looney, M.S.J. Hashni,The Wettability of SiC Particles by Molten Aluminium Alloy, J. Mater. Processing Tech. 119, 324-328 (2001). DOI: https://doi.org/10.1016/s0924-0136(01)00975-x
  • [35] S. Rajkumar, K. Mageshkumar, K. Arul, Materials Today: Proceedings. (2022). DOI: https://doi.org/10.1016/j.matpr.2022.01.473 (in press).
  • [36] T. Ding, H.G. Yan, J.H. Chen, Effect of welding speed on microstructure and mechanical properties of Al-Mg-Mn-Zr-Ti alloy sheet during friction stir welding, Trans. Nonferrous Met. Soc. China 31, 3626-3642 (2021). DOI: https://doi.org/10.1016/S1003-6326(21)65753-9
  • [37] Ravi Kumar, A. Nait Salah, Neeraj Kant, Effect of FSW process parameters on mechanical properties and microstructure of dissimilar welded joints of AA2024 and AA6082, Materials Today: Proceedings 50, 1435-1441 (2022). DOI: https://doi.org/10.1016/j.matpr.2021.09.007
  • [38] I. Vysotskii, S. Malopheyev, S. Mironov, R. Kaibyshev, Deformation behavior of friction-stir welded Al-Mg-Mn alloy with ultrafine-grained structure, Materials Characterization 185, 111758 (2022). DOI: https://doi.org/10.1016/j.matchar.2022.111758
  • [39] K. Krasnowski, C. Hamilton, S. Dymek, Influence of the tool shape and weld configuration on microstructure and mechanical properties of the Al 6082 alloy FSW joints, Archives of Civil and Mechanical Engineering 15 (1), 133-141 (2015). DOI: https://doi.org/10.1016/j.acme.2014.02.001
  • [40] C.C. Dua, X. Wang, Q.H. Pan, SVET, Correlation between microstructure and mechanical properties of 6061-T6 double-side FSW joint, Journal of Manufacturing Processes 38, 122-134 (2019). DOI: https://doi.org/10.1016/j.jmapro.2019.01.010
Uwagi
1. This research was financially supported by the National Natural Science Foundation of China, No. 51605206.
2. Postgraduate Research & practice Inovation Program of Jiangsu Province, No.SJCX 21_1769.
3. Jiangsu Province key Laboratory of High-end structural Materials, No.hsm1806.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14616ff6-22fc-4132-aa0f-7e7b5e907564
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.