Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Engineering neo-biomimetics, i.e. imitation models based on body structures and behavior of living organisms, relied upon to solve complex problems, have been studied in various fields. In distributed networks, such as ad-hoc networks and wireless sensor networks, the behavior of a variety of true slime molds which are capable of constructing multipath flow networks based on the amount of body, has been studied. Ad hoc networks only consist of mobile terminals (nodes) that can relay packets along an established route. However, link relations and the available bandwidth of the nodes change dynamically due to the mobility of nodes. In addition, the speed of communication between nodes also varies due to node positions and their communication-related quality. Thus, practical use of ad-hoc networks still remains an issue, because it is difficult to establish stable routes under such environments. This study aims to propose an adaptive load balancing routing technique that adaptively diversifies the transmission paths based on the available bandwidth, residual battery life, and the data transmission volume, by applying a mathematical model of slime mold routing, known as the physarum solver. We confirm the effectiveness of its adaptive behavior in dynamic environments using computer simulations.
Rocznik
Tom
Strony
14--22
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Graduate School of Systems Engineeringand Science, Shibaura Institute of Technology, Saitama, Japan
autor
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku Saitama-shi, Saitama, Japan
autor
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
Bibliografia
- [1] M. Shimomura, „The new trendsin next generation biomimetics material technology: Learning from biodiversity", Sci. Technol. Trends. Q. Rev., vol. 37, pp. 53-75, 2010 (doi:11035/2843).
- [2] D. Chen, Y. Liu, H. Chen, and D. Zhang, “Bio-inspired dragreduction surface from sharkskin", Biosurf. And Biotribol., vol. 4, no. 2, pp. 39-45, 2018 (doi:10.1049/bsbt.2018.0006).
- [3] S. Das, M. Bhowmick, S. K. Chattopadhyay, and S. Basak, “Application of biomimicry intextiles", Curr. Sci., vol. 109, no. 5, pp. 893-901, 2015 (doi:10.18520/v109/i5/893-901).
- [4] T. Nakagaki, H.Yamada, and A. TÛth, “Path finding by true morphogenesis in an amoeboid organism", Biophys. Chemistry, vol. 92, no.1, pp. 47-52, 2001 (doi:10.1016/S0301-4622(01)00179-X).
- [5] G.-D. Caro, F. Ducatelle, and L.-M. Gambardella, “AntHocNet: anadaptive nature-inspired algorithm for routingin mobile ad hoc networks", Eur. Trans. On Telecommun., vol.16, pp. 443-455, 2005, (doi:10.1002/ett.1062).
- [6] R.Leidenfrost andW. Elmenreich,”Fire yclock synchronizationinan802.15.4wirelessnetwork",EURASIPJ.onEmbed.Syst.,vol.2009,articleno.7, 2009(doi:10.1155/2009/186406).
- [7] M. Hato, T. Ueda, K. Kurihara, and Y. Kobatake, “Phototaxis in true slime mold physarum polycephalum”, Cell Struct. & Funct., vol. 1, no. 3, pp. 269–278, 1976 (doi: 10.1247/csf.1.269).
- [8] S. Corson and J. Macker, “Mobile ad hoc networking (MANET): routing protocol performance issues and evaluation considerations”, RFC 2501, IETF, 1999 (doi: 10.17487/RFC2501).
- [9] “IEEE standard 802.11. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications”, IEEE Std 802.11, June 1999.
- [10] “IEEE Standard for Information technology – Telecommunications and information exchange between systems Local and metropolitan area networks – Specific requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications – Amendment 4: Enhancements for very high throughput for operation in bands below 6 GHz”, IEEE Std 802.11ac-2013, Dec. 2013.
- [11] A. Kamerman and L. Monteban, “WaveLAN-II: a high-performance wireless LAN for the unlicensed band”, Bell Labs Tech. J., vol. 2, no. 3, pp. 118–133, 2002 (doi: 10.1002/bltj.2069).
- [12] R. Karmakar, S. Chattopadhyay, and S. Chakraborty, “Impact of IEEE 802.11n/ac PHY/MAC high throughput enhancements on transport and application protocols – A Survey”, IEEE Commun. Surveys & Tutor., vol. 19, no. 4, pp. 2050–2091 (doi: 10.1109/COMST.2017.2745052).
- [13] G. Holland, N. Vaidya, and P. Bahl, “A rate-adaptive MAC protocol for multi-hop wireless networks”, in Proc. 7th Ann. Int. Conf. on Mob. Comput. & Netw. MobiCom’01, Rome, Italy, 2001, pp. 236–251 (doi: 10.1145/381677.381700).
- [14] M. Lacage, H. Manshaei, and T. Turletti, “IEEE 802.11 rate adaptation: a practical approach”, in Proc. 7th ACM Int. Symp. on Model., Anal., and Simul. of Wirel. and Mob. Syst. MSWiM 2004, Venice, Italy, 2004, pp. 126–134 (doi: 10.1145/1023663.1023687).
- [15] X, Wang and C. Li, “A topology-independent broadcasting protocol in ad hoc networks with MIMO links”, in Proc. Int. Conf. on Commun. Mob. Comput. CMC 2010, Shenzhen, China, 2010, vol. 3, pp. 219–223 (doi: 10.1109/CMC.2010.291).
- [16] A. Tero, R. Kobayashi, and T. Nakagaki, “A mathematical model for adaptive transport network in path finding by true slime mold”, J. of Theor. Biology, vol. 244, no. 4, pp. 553–564 (doi: 10.1016/j.jtbi.2006.07.015).
- [17] A. Tero et al., “Rules for biologically inspired adaptive network design”, Science, vol. 327, no. 5963, pp. 439–442, 2010 (doi: 10.1126/science.1177894).
- [18] A. Tero, R. Kobayashi, and T. Nakagaki, “Physarum solver: a biologically inspired method of road-network navigation”, Physica A: Statis. Mechan. and its Appl., vol. 363, no. 1, pp. 115–119, 2006 (doi: 10.1016/j.physa.2006.01.053).
- [19] M. Zhang, W. Wei, R. Zheng, and Q. Wu, “P-bRS: a physarumbased routing scheme for wireless sensor networks”, The Scientific World J., vol. 2014, Article ID 531032, 2014 (doi: 10.1155/2014/531032).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14602f0c-361c-4ff1-bcb1-f585283f0fda