PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rainwater harvesting on animal farms as a response to the increasing water deficit in agriculture

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zagospodarowanie wody opadowej w gospodarstwach rolnych jako odpowiedź na rosnący deficyt wody w rolnictwie
Języki publikacji
EN
Abstrakty
EN
In the context of growing water scarity in agriculture the harvesting of rainwater from livestock buildings could be seen as a new opportunity. Based on the National Agricultural Census (2020), rainfall data (1991-2020) and the opportunity and investment costs related to the installation purchase, a prognostic analysis was conducted. The analysis revealed the immense potential of farms for rainwater collection. In Poland there are 201,980 cowsheds, 65,088 pigsties and 96,435 poultry houses, representing a total area of 8,820 ha, which allows additionally to retain over 41 million m3 of water per year. This amount will cover only 15% of the livestock total water demand. It should be noted that the average economic efficiency (EF) value for the entire country was 81.6%, and the differences in the analyzed animal groups reached a moderate level (CV=14.7%±0.1 depending on the groups). The unit price of tap water was the main determinant of the highest EF of investment in rainwater harvesting (RWH) in particular voivodeships.
PL
W kontekście rosnącego niedoboru wody w rolnictwie zbieranie deszczówki z budynków inwentarskich można postrzegać jako nową szansę. Na podstawie danych: z Powszechnego Spisu Rolnego (2020), opadowych z wielolecia 1991-2020 oraz kosztów alternatywnych i inwestycyjnych związanych z zakupem instalacji, przeprowadzono analizę prognostyczną. Na tej podstawie wykazano ogromny potencjał gospodarstw rolnych w zakresie zbierania wód opadowych. W Polsce funkcjonuje 201 980 obór, 65 088 chlewni oraz 96 435 kurników, o łącznej powierzchni 8 820 ha, co pozwala dodatkowo zretencjonować ponad 41 milionów m3 wody rocznie. Ilość ta mogłaby pokryć tylko 15% całkowitego zapotrzebowania inwentarza żywego na wodę. Należy zauważyć, że średnia wartość efektywności ekonomicznej analizowanego systemu zbierania deszczówki dla całego kraju wyniosła 81,6%, przy czym wskaźnik zmienności w poszczególnych grupach zwierząt osiągnął poziom przeciętny (CV=14,7% ±0.1 w zależności od grupy). Głównym czynnikiem determinującym najwyższą efektywność ekonomiczną inwestycji w instalację deszczową w poszczególnych województwach były ceny wody pitnej.
Rocznik
Tom
Strony
art. no. 903
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Poznan University of Life Sciences, Piątkowska Street 94E, 60-649 Poznań, Poland
autor
  • Poznan University of Life Sciences
  • Poznan University of Life Sciences
Bibliografia
  • Act from 14 January 2002. Act on determining average water consumption standards. Journal of Laws No. 8, item 70. https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20020080070/O/D20020070.pdf (in Polish).
  • Adham, A., Wesseling, J. G., Abed, R., Riksen, M., Ouessar, M., & Ritsema, C. J. (2019). Assessing the impact of climate change on rainwater harvesting in the Oum Zessar watershed in Southeastern Tunisia. Agricultural Water Management, 221, 131-140. https://doi.org/10.1016/j.agwat.2019.05.006
  • Bafdal, N., & Dwiratna, S. (2018). Water harvesting system as an alternative appropriate technology to supply irrigation on red oval cherry tomato production. International Journal on Advanced Science, Engineering and Information Technology, 8(2), 561-566. http://dx.doi.org/10.18517/ijaseit.8.2.5468
  • Berbeć, A. K., Feledyn-Szewczyk, B., & Kopiński, J. (2017). Ocena stopnia zrównoważenia gospodarstw rolnych o różnych kierunkach produkcji za pomocą modelu RISE. Problems of World Agriculture / Problemy Rolnictwa Światowego, 17(2), 7-17. https://doi.org/10.22630/PRS.2017.17.2.22 (in Polish).
  • Brumm, M. (2006). Patterns of Drinking Water Use in Pork Production Facilities. https://digitalcommons.unl.edu/coopext_swine/221
  • Campisano, A., & Modica, C. (2012). Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily. Resources, Conservation and Recycling, 63, 9-16. https://doi.org/10.1016/j.resconrec.2012.03.007
  • Central Statistical Office of Poland. (2020). Farm animals in 2020. https://stat.gov.pl/en/topics/agriculture-forestry/animal-production-farm-animals/farm-animals-in-2020,1,3.html (in Polish).
  • Chiu, Y. R., Liaw, C. H., & Chen, L. C. (2009). Optimizing rainwater harvesting systems as an innovative approach to saving energy in hilly communities. Renewable Energy, 34(3), 492-498. https://doi.org/10.1016/j.renene.2008.06.016
  • Christian Amos, C., Rahman, A., & Mwangi Gathenya, J. (2016). Economic analysis and feasibility of rainwater harvesting systems in urban and peri-urban environments: A review of the global situation with a special focus on Australia and Kenya. Water, 8(4), 149. https://doi.org/10.3390/w8040149
  • Devkota, J., Schlachter, H., & Apul, D. (2015). Life cycle based evaluation of harvested rainwater use in toilets and for irrigation. Journal of Cleaner Production, 5, 311-321. https://doi.org/10.1016/j.jclepro.2015.02.021
  • Drożdż-Szczybura, M. (2011). O wyrazie architektonicznym budynków inwentarskich. Od kraalu do farmy pionowej. Kraków: Wydawnictwo Politechniki Krakowskiej. (in Polish).
  • Environment Agency. (2009). Rainwater Harvesting: an on-farm guide, rainwater as a resource. https://www.ecosystemsdirect.co.uk/uploads/documents/Rainwater%20Harvesting%20on%20Farms(2).pdf
  • Ertop, H., Kocięcka, J., Atilgan, A., Liberacki, D., Niemiec, M., & Rolbiecki, R. (2023). The importance of rainwater harvesting and its usage possibilities: Antalya example (Turkey). Water, 15(12), 2194. https://doi.org/10.3390/w15122194
  • European Environment Agency. (2018). European waters—assessment of status and pressures. https://www.eea.europa.eu/publications/state-of-water
  • Eurostat. (2019). Agri-environmental indicator — irrigation. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_irrigation#Analysis_at_regional_level
  • Eurostat. (2020). Production of poultry meat in slaugherthouses: Poultry [TAG 00043]. https://ec.europa.eu/eurostat/databrowser/view/TAG00043/default/table
  • Farreny, R., Morales-Pinzón, T., Guisasola, A., Tayà, C., Rieradevall, J., & Gabarrell, X. (2011). Roof selection for rainwater harvesting: Quantity and quality assessments in Spain. Water research, 45(10), 3245-3254. https://doi.org/10.1016/j.watres.2011.03.036
  • Fernandes, L. F. S., Terêncio, D. P., & Pacheco, F. A. (2015). Rainwater harvesting systems for low demanding applications. Science of the Total Environment, 529, 91-100. https://doi.org/10.1016/j.scitotenv.2015.05.061
  • Han, D., & Bray, M. (2006). Automated Thiessen polygon generation. Water Resources Research, 42(11). https://doi.org/10.1029/2005WR004365
  • Hristov, J., Barreiro-Hurle, J., Salputra, G., Blanco, M., & Witzke, P. (2021). Reuse of treated water in European agriculture: Potential to address water scarcity under climate change. Agricultural Water Management, 251, 106872. https://doi.org/10.1016/j.agwat.2021.106872
  • IMGW-PiB. (2024, June 30). Climate standards 1991-2020. https://klimat.imgw.pl/pl/climate-normals/OPAD_SUMA (in Polish).
  • Ingrao, C., Strippoli, R., Lagioia, G., & Huisingh, D. (2023). Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon, 9(8), e18507. https://doi.org/10.1016/j.heliyon.2023.e18507
  • Kłos, L. (2023). Agricultural producers’ knowledge of rational water management – case stage (Poland, EU). Economics and Environment, 85(2), 271-295. https://doi.org/10.34659/eis.2023.85.2.553
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263. https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/deliver/index/docId/40083/file/metz_Vol_15_No_3_p259-263_World_Map_of_the_Koppen_Geiger_climate_classification_updated_55034.pdf
  • Kubiak-Wójcicka, K., & Machula, S. (2020). Influence of climate changes on the state of water resources in Poland and their usage. Geosciences, 10(8), 312. https://doi.org/10.3390/geosciences10080312
  • Londra, P. A., Theocharis, A. T., Baltas, E., & Tsihrintzis, V. A. (2018). Assessment of rainwater harvesting tank size for livestock use. Water Science and Technology: Water Supply, 18(2), 555-566. https://doi.org/10.2166/ws.2017.136
  • Massabie, P., Granier, R., & Dividich, J. L. (1996). Effect of ambient temperature on zootechnical performance of growing-finishing pigs fed ad libitum. Journées de la Recherche Porcine en France, 28, 189-194.
  • Mekonnen, M., & Hoekstra, A. Y. (2010). The green, blue and grey water footprint of farm animals and animal products. https://www.waterfootprint.org/resources/Report-48-WaterFootprint-AnimalProducts-Vol2_1.pdf
  • Mrozik, K. (2012). The impact of soil cultivations methods on retention capacity of Kania river basin. Wasser Wirtschaft, 102(1-2), 75-79. https://doi.org/10.1365/s35147-012-0213-1 (in German).
  • Mrozik, K., & Idczak, P. (2017). The capacity of ecosystem services in small water retention measures. Economics and Environment, 62(3), 37-48. https://www.ekonomiaisrodowisko.pl/journal/article/view/316
  • Mubareka, S., Maes, J., Lavalle, C., & de Roo, A. (2013). Estimation of water requirements by livestock in Europe. Ecosystem Services, 4, 139-145. https://doi.org/10.1016/j.ecoser.2013.03.001
  • Muhirirwe, S. C., Kisakye, V., & Van der Bruggen, B. (2022). Reliability and economic assessment of rainwater harvesting systems for dairy production. Resources, Conservation & Recycling Advances, 14, 200079. https://doi.org/10.1016/j.rcradv.2022.200079
  • Nagypál, V., Mikó, E., & Hodúr, C. (2020). Sustainable water use considering three Hungarian dairy farms. Sustainability, 12(8), 3145. https://doi.org/10.3390/su12083145
  • NBP. (2024). Middle exchange rates of foreign currencies – table A. https://nbp.pl/en/archiwum-kursow/table-no-161-a-nbp-2024-of-2024-08-20/
  • Pelak, N., & Porporato, A. (2016). Sizing a rainwater harvesting cistern by minimizing costs. Journal of Hydrology, 541, 1340-1347. https://doi.org/10.1016/j.jhydrol.2016.08.036
  • Polish Chamber of Insurance. (2023). A climate of mounting losses. The role of insurance in climate protection and the energy transition. https://piu.org.pl/wp-content/uploads/2023/11/PIU-raport-klimatyczny-2023_final_druk_eng_lekki.pdf
  • Polish Investment & Trade Agency. (2024, July 22). The Polish food specialties sector. https://www.paih.gov.pl/wp-content/uploads/2024/02/The-Polish-Food-Specialties-Sector-2023.pdf
  • Raimondi, A., Quinn, R., Abhijith, G. R., Becciu, G., & Ostfeld, A. (2023). Rainwater Harvesting and Treatment: State of the Art and Perspectives. Water, 15(18), 1518. https://doi.org/10.3390/w15081518
  • Rendón-Huerta, J. A., Pinos-Rodríguez, J. M., Kebreab, E., García-López, J. C., & Vicente, J. G. (2018). Comparison of greenhouse gas emissions from Mexican intensive dairy farms. South African Journal of Animal Science, 48(1), 48-55. https://doi.org/10.4314/sajas.v48i1.6
  • Rodrigues, G. C., Paredes, P., Gonçalves, J. M., Alves, I., & Pereira, L. S. (2013). Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns. Agricultural Water Management, 126, 85-96. http://doi.org/10.1016/j.agwat.2013.05.005
  • Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J., & D’Odorico, P. (2020). Global agricultural economic water scarcity. Science Advances, 6(18), eaaz6031. http://dx.doi.org/10.1126/sciadv.aaz6031
  • Santos, C., & Taveira-Pinto, F. (2013). Analysis of different criteria to size rainwater storage tanks using detailed methods. Resources, Conservation and recycling, 71, 1-6. http://doi.org/10.1016/j.resconrec.2012.11.004
  • Santos, C., Imteaz, M. A., Ghisi, E., & Matos, C. (2020). The effect of climate change on domestic Rainwater Harvesting. Science of the Total Environment, 729, 138967. https://doi.org/10.1016/j.scitotenv.2020.138967
  • Słyś, D., & Stec, A. (2020). Centralized or decentralized rainwater harvesting systems: A case study. Resources, 9(1), 5. https://doi.org/10.3390/resources9010005
  • Statistics Poland. (2023). Poland in figures 2023. https://stat.gov.pl/en/topics/other-studies/other-aggregated-studies/poland-in-figures-2023,9,17.html?pdf=1
  • Sultana, M. N., Uddin, M. M., Ridoutt, B. G., & Peters, K. J. (2014). Comparison of water use in global milk production for different typical farms. Agricultural Systems, 129, 9-21. https://doi.org/10.1016/j.agsy.2014.05.002
  • Szwed, M. (2019). Variability of precipitation in Poland under climate change. Theoretical and Applied Climatology, 135(3), 1003-1015. https://doi.org/10.1007/s00704-018-2408-6
  • The Agricultural Census. (2020). Characteristics of agricultural holdings in 2020. https://stat.gov.pl/en/topics/agriculture-forestry/agricultural-census-2020/
  • Thier, A. (2020). Ocena stanu zasobów wodnych i analiza nakładów gospodarczych na zaopatrzenie w wodę w Polsce na tle krajów Europejskich. In T. Walczykiewicz (Ed.), Współczesne problemy gospodarki wodnej w kontekście zagospodarowania przestrzennego (pp. 9-26). Warszawa: IMGW-PIB. (in Polish).
  • Tzanakakis, V. A., Paranychianakis, N. V., & Angelakis, A. N. (2020). Water supply and water scarcity. Water, 12(9), 2347. https://doi.org/10.3390/w12092347
  • Van der Sterren, M., Rahman, A., & Dennis, G. R. (2012). Implications to stormwater management as a result of lot scale rainwater tank systems: a case study in Western Sydney, Australia. Water Science and Technology, 65(8), 1475-1482. https://doi.org/10.2166/wst.2012.033
  • Ward, D., & Mckague, K. (2019). Water Requirements of Livestock. https://www.scirp.org/reference/referencespapers?referenceid=2792303
  • Wójcik, P. (2020). Pobór wody w produkcji zwierzęcej. Woda w rolnictwie. Ekspertyza. Warszawa: Wydawnictwo Polskiego Klubu Ekologicznego Koła Miejskiego w Gliwicach oraz Koalicji Żywa Ziemia. (in Polish).
  • Yannopoulos, S., Giannopoulou, I., & Kaiafa-Saropoulou, M. (2019). Investigation of the current situation and prospects for the development of rainwater harvesting as a tool to confront water scarcity worldwide. Water, 11(10), 2168. https://doi.org/10.3390/w11102168
  • Zarzyńska, J., & Zabielski, R. (2020). Adaptacja produkcji zwierzęcej do zmian klimatycznych. In K. Prandecki & M. Burchard-Dziubińska (Eds.), Zmiana klimatu - skutki dla polskiego społeczeństwa i gospodarki (pp. 213-239). Warszawa: Komitet Prognoz “Polska 2000 Plus” PAN. (in Polish).
  • Ziernicka-Wojtaszek, A., & Kopcińska, J. (2020). Variation in atmospheric precipitation in Poland in the years 2001–2018. Atmosphere, 11(8), 794. https://doi.org/10.3390/atmos11080794
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14598b75-d5ba-40a9-82d1-402e760bba86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.