Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Automatic car license plate recognition (LPR) is widely used nowadays. It involves plate localization in the image, character segmentation and optical character recognition. In this paper, a set of descriptors of image segments (characters) was proposed as well as a technique of multi-stage classification of letters and digits using cascade of neural network and several parallel Random Forest or classification tree or rule list classifiers. The proposed solution was applied to automated recognition of number plates which are composed of capital Latin letters and Arabic numerals. The paper presents an analysis of the accuracy of the obtained classifiers. The time needed to build the classifier and the time needed to classify characters using it are also presented.
Słowa kluczowe
Rocznik
Tom
Strony
275--280
Opis fizyczny
Bibliogr. 45 poz., fot., rys., tab.
Twórcy
Bibliografia
- [1] R. Baran, T. Rusc, P. Fornalski, “A smart camera for the surveillance of vehicles in intelligent transportation systems”, Multimedia Tools and Applications, vol. 7, pp. 10471-10493, 2016: https://doi.org/10.1007/s11042-015-3151-y
- [2] W. Y. Szeto “Dynamic modeling for intelligent transportation system applications”, Journal of Intelligent Transportation Systems, vol. 18, no. 4, pp. 323-326, 2014. https://doi.org/10.1080/15472450.2013.834770
- [3] S.-H. Park, S.-B. Yu, J-A. Kim, H. Yoon, “An All-in-One Vehicle Type and License Plate Recognition System Using YOLOv4”, Sensors, vol. 22, no. 3, 921, 2022. https://doi.org/10.3390/s22030921
- [4] A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection”, arXiv 2020, arXiv:2004.10934.
- [5] K. Roszyk, M. R. Nowicki, P. Skrzypczyński, “Adopting the YOLOv4 Architecture for Low-Latency Multispectral Pedestrian Detection in Autonomous Driving”, Sensors, vol. 22, no. 3, 1082, 2022. https://doi.org/10.3390/s22031082
- [6] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection”, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788, 2016. https://doi.org/10.1109/CVPR.2016.91
- [7] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, “SSD: Single shot MultiBox detector”, in Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11-14 October 2016, Springer International Publishing: Cham, Switzerland, pp. 21-37, 2016. https://doi.org/10.1007/978-3-319-46448-0_2
- [8] Ł. Grad, Adversarial Uncertainty Learning in Deep Neural Networks, University of Warsaw, seminar, October 29, 2021, https://www.mimuw.edu.pl/sites/default/files/seminaria/adversarial_uncertainty_in_deep_learning-2.pdf
- [9] J. Shashirangana, H. Padmasiri, D. Meedeniya, C. Perera, “Automated License Plate Recognition: A Survey on Methods and Techniques”, IEEE Access, vol. 9, pp. 11203-11225, 2020. https://doi.org/10.1109/ACCESS.2020.3047929
- [10] C. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D. Psoroulas, V. Loumos, E. Kayafas, “License Plate Recognition From Still Images and Video Sequences: A Survey”, IEEE Trans. Intell. Transp. Syst., vol. 9, pp. 377-391, 2008. https://doi.org/10.1109/TITS.2008.922938
- [11] B.-G. Han, J. T. Lee, K.-T. Lim; Y. Chung, “Real-time license plate detection in high-resolution videos using fastest available cascade classifier and core patterns”, ETRI J., vol. 37, pp. 251-261, 2015. https://doi.org/10.4218/etrij.15.2314.0077
- [12] S. Park, H. Yoon, S. Park, “Multi-style license plate recognition system using k-nearest neighbors”, KSII Trans. Internet Inf. Syst. (TIIS), vol. 13, pp. 2509-2528, 2019. https://doi.org/10.3837/tiis.2019.05.015
- [13] B.-G. Han, J.T. Lee, K.-T. Lim, D.-H. Choi, “License plate image generation using generative adversarial networks for end-to-end license plate character recognition from a small set of real images”, Applied Sciences, vol. 10, 2780, 2020. https://doi.org/10.3390/app10082780
- [14] G. Heo, M. Kim, I. Jung, D.-R. Lee, I.-S. Oh, “Extraction of car license plate regions using line grouping and edge density methods”, in Proc. Int. Symp. Inf. Technol. Converg. (ISITC), 23-24 Nov. 2007, pp. 37-42, 2007. https://doi.org/10.1109/ISITC.2007.79
- [15] R. C. Gonzalez, R. E. Woods, “Digital Image Processing”, third edition, 3rd Edition, Pearson Prentice Hall, Upper Saddle River, 2008.
- [16] W. Jia, H. Zhang, X. He, and Q. Wu, “Gaussian weighted histogram intersection for license plate classification”, in Proc. 18th Int. Conf. Pattern Recognit. (ICPR), vol. 3, pp. 574-577, 2006. https://doi.org/10.1109/ICPR.2006.596
- [17] W. Jia, H. Zhang, X. He, and M. Piccardi, “Mean shift for accurate license plate localization”, in Proc. IEEE Intell. Transp. Syst., 13-16 Sep. 2005, pp. 566-571, 2005. https://doi.org/10.1109/ITSC.2005.1520110
- [18] F. Wang, L. Man, B. Wang, Y. Xiao, W. Pan, and X. Lu, “Fuzzy-based algorithm for color recognition of license plates”, Pattern Recognition Letters, vol. 29, no. 7, pp. 1007-1020, 2008. https://doi.org/10.1016/j.patrec.2008.01.026
- [19] H.-K. Xu, F.-H. Yu, J.-H. Jiao, and H.-S. Song, “A new approach of the vehicle license plate location”, in Proc. 6th International Conference on Parallel and Distributed Computing Applications and Technologies (PDCAT), pp. 1055-1057, 2005. https://doi.org/10.1109/PDCAT.2005.24
- [20] R. Zunino, S. Rovetta, “Vector quantization for license-plate location and image coding”, IEEE Trans. Ind. Electron., vol. 47, no. 1, pp. 159-167, Feb. 2000. https://doi.org/10.1109/41.824138
- [21] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, V. Loumos, and E. Kayafas, “A license plate-recognition algorithm for intelligent transportation system applications”, IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 3, pp. 377-392, Sep. 2006. https://doi.org/10.1109/TITS.2006.880641
- [22] H. Caner, H. S. Gecim, and A. Z. Alkar, “Efficient embedded neuralnetwork-based license plate recognition system”, IEEE Transactions on Vehicular Technology, vol. 57, no. 5, pp. 2675-2683, Sep. 2008. https://doi.org/10.1109/TVT.2008.915524
- [23] C.-T. Hsieh, Y.-S. Juan, and K.-M. Hung, ‘‘Multiple license plate detection for complex background,’’ in Proc. 19th Int. Conf. Adv. Inf. Netw.Appl. (AINA), vols. 1-2, pp. 389-392, 2005. https://doi.org/10.1109/AINA.2005.257
- [24] J. Matas and K. Zimmermann, “Unconstrained licence plate and text localization and recognition”, in Proc. IEEE Intell. Transp. Syst., Sep. 2005, pp. 225-230, 2005. https://doi.org/10.1109/ITSC.2005.1520111
- [25] X. Zhang, P. Shen, Y. Xiao, B. Li, Y. Hu, D. Qi, X. Xiao, and L. Zhang, “License plate-location using AdaBoost algorithm”, in Proc. IEEE International Conference on Information and Automation, Jun. 2010, pp. 2456-2461, 2010. https://doi.org/10.1109/ICINFA.2010.5512276
- [26] Z. Selmi, M. B. Halima, A. M. Alimi, ‘‘Deep learning system for automatic license plate detection and recognition,’’ in Proc. 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 9-15 November 2017, pp. 1132-1138, 2017. https://doi.org/10.1109/ICDAR.2017.187
- [27] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979. https://doi.org/10.1109/TSMC.1979.4310076
- [28] Polish license plate from Radomsko poviat https://upload.wikimedia.org/wikipedia/commons/9/90/Pltableseries2006.jpg. Viewed 29 December 2022.
- [29] T. Nukano, M. Fukumi, M. Khalid, “Vehicle license plate character recognition by neural networks”, in Proc. Int. Symp. Intell. Signal Process. Commun. Syst. (ISPACS), pp. 771-775, 2004. https://doi.org/10.1109/ISPACS.2004.1439164
- [30] S. Du, M. Ibrahim, M. Shehata, W. Badawy, ‘‘Automatic license plate recognition (ALPR): A state-of-the-art review,’’ IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, no. 2, pp. 311-325, 2013. https://doi.org/10.1109/TCSVT.2012.2203741
- [31] C. Busch, R. Domer, C. Freytag, H. Ziegler, “Feature based recognition of traffic video streams for online route tracing”, in Proc. 48th IEEE Vehicular Technology Conference. Pathway Global Wireless Revolution (VTC), 21 May 1998, vol. 3, pp. 1790-1794, 1998. https://doi.org/10.1109/VETEC.1998.686064
- [32] S. Montazzolli, C. Jung, “Real-time Brazilian license plate detection and recognition using deep convolutional neural networks”, in Proc. 30th SIBGRAPI Conf. Graph., Patterns Images, Oct. 2017, pp. 55-62, 2017. https://doi.org/10.1109/SIBGRAPI.2017.14
- [33] R. Laroca, L. A. Zanlorensi, G. R. Gonçalves, E. Todt, W. R. Schwartz, D. Menotti, “An efficient and layout-independent automatic license plate recognition system based on the YOLO detector”, IET Intell Transp Syst. vol. 15, pp. 483-503, 2021. https://doi.org/10.1049/itr2.12030
- [34] C. A. Rahman, W. Badawy, A. Radmanesh, “A real time vehicle’s license plate recognition system”, in Proc. IEEE Conference on Advanced Video and Signal Based Surveillance, Miami 22 July 2003, pp. 163-166, 2003. https://doi.org/10.1109/AVSS.2003.1217917
- [35] H. A. Hegt, R. J. de la Haye, N. A. Khan, “A high performance license plate recognition system”, in Proc. IEEE International Conference on Systems, Man, and Cybernetics (SMC), 14 Oct. 1998, pp. 4357-4362, 1998. https://doi.org/10.1109/ICSMC.1998.727533
- [36] P. Hu, Y. Zhao, Z. Yang, J. Wang, “Recognition of gray character using Gabor filters”, in Proc. 5th Int. Conf. Inf. Fusion (FUSION), vol. 1, pp. 419-424, 2002. https://doi.org/10.1109/ICIF.2002.1021184
- [37] S. N. H. S. Abdullah, M. Khalid, R. Yusof, K. Omar, "License plate recognition using multi-cluster and multilayer neural networks", in Proc. 2nd Int. Conf. Inf. Commun. Technol., vol. 1, pp. 1818-1823, 2006. https://doi.org/10.1109/ICTTA.2006.1684663
- [38] K. K. Kim, K. I. Kim, J. B. Kim, and H. J. Kim, “Learning-based approach for license plate recognition”, in Proc. Neural Netw. Signal Process. X, IEEE Signal Process. Soc. Workshop, vol. 2, pp. 614-623, 2000. https://doi.org/10.1109/NNSP.2000.890140
- [39] D. Llorens, A. Marzal, V. Palazón, J. M. Vilar, “Car license plates extraction and recognition based on connected components analysis and HMM decoding”, In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds) Pattern Recognition and Image Analysis. IbPRIA 2005. Lecture Notes in Computer Science, vol. 3522, pp. 571-578, Springer, Berlin, Heidelberg, 2005. https://doi.org/10.1007/11492429_69
- [40] Tesseract. https://github.com/tesseract-ocr. Viewed 29 December 2022.
- [41] OpenALPR. https://github.com/openalpr/openalpr. Viewed 29 December 2022.
- [42] Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 11 grudnia 2017 r. w sprawie rejestracji i oznaczania pojazdów oraz wymagań dla tablic rejestracyjnych (Polish: Regulation of the Minister of Infrastructure and Construction of 11 December 2017 on the registration and marking of vehicles and requirements for license plates).
- [43] X. Pan, X. Ye, S. Zhang, “A hybrid method for robust car plate character recognition”, Engineering Applications of Artificial Intelligence, vol. 18, no. 8, pp. 963-972, 2005. https://doi.org/10.1016/j.engappai.2005.03.011
- [44] L. Breiman, “Random Forests”, Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
- [45] E. Frank, M. A. Hall, I. H. Witten, “The WEKA Workbench”. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, Morgan Kaufmann, Fourth Edition, 2016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1455a4aa-6c1f-4642-92ca-97387eac06ba