PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the undifferenced GNSS precise positioning in determining coordinates in national reference frames

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In high-accuracy positioning using GNSS, the most common solution is still relative positioning using double-difference observations of dual-frequency measurements. An increasingly popular alternative to relative positioning are undifferenced approaches, which are designed to make full use of modern satellite systems and signals. Positions referenced to global International Terrestrial Reference Frame (ITRF2008) obtained from Precise Point Positioning (PPP) or Undifferenced (UD) network solutions have to be transformed to national (regional) reference frame, which introduces additional bases related to the transformation process. In this paper, satellite observations from two test networks using different observation time series were processed. The first test concerns the positioning accuracy from processing one year of dual-frequency GPS observations from 14 EUREF Permanent Network (EPN) stations using NAPEOS 3.3.1 software. The results were transformed into a national reference frame (PL-ETRF2000) and compared to positions from an EPN cumulative solution, which was adopted as the true coordinates. Daily observations were processed using PPP and UD multi-station solutions to determine the final accuracy resulting from satellite positioning, the transformation to national coordinate systems and Eurasian intraplate plate velocities. The second numerical test involved similar processing strategies of post-processing carried out using different observation time series (30 min., 1 hour, 2 hours, daily) and different classes of GNSS receivers. The centimeter accuracy of results presented in the national coordinate system satisfies the requirements of many surveying and engineering applications.
Słowa kluczowe
EN
PPP   ITRF   ETRF   ESA   IGS  
Rocznik
Strony
49--69
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Institute of Geodesy, Oczapowskiego 1, 10-719 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Institute of Geodesy, Oczapowskiego 1, 10-719 Olsztyn, Poland
Bibliografia
  • Afifi A., El-Rabbany A., (2015). Performance Analysis of Several GPS/Galileo Precise Point Positioning Models. Sensors; vol. 15(6), pp.14701-14726.
  • Alkan R. M., İlçi V., Ozulu I. M., Saka M. H., (2015). A comparative study for accuracy assessment of PPP technique using GPS and GLONASS in urban areas, Measurement, vol. 69, pp. 1-8.
  • Altamimi, Z., Rebischung P., Métivier L., Xavier C., (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research Solid Earth, vol. 121, pp. 6109-6131.
  • Araszkiewicz A., Bogusz J., Figurski M., Szafranek K., (2010). Application of short-time GNSS solutions to geodynamical studies. Acta Geodynamica et Geomaterialia, vol. 7(3), pp. 295-302.
  • ASG-EUPOS. Active Polish Reference Network, http://www.asgeupos.pl [Accessed: 5 January 2017].
  • Bisnath, S., Gao, Y., (2009). Current state of precise point positioning and future prospects and limitations. Sideris M.G. (eds) Observing our Changing Earth. International Association of Geodesy Symposia, vol. 133 , pp. 615-623.
  • Blewitt G., (1989). Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km. Journal of Geophysical Research, vol. 94(B8), pp. 10187-10203.
  • Boehm, J., Niell A., Tregoning P.,Schuh H., (2006). Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett., vol. 33(7).
  • Boehm, J., Heinkelmann R., Schuh H., (2007). Short Note: A global model of pressure and temperature for geodetic applications. Journal of Geodesy, vol. 81(10), pp. 679-683.
  • Bogusz, J., Figurski, M., Kontny, B., Grzempowski P., (2012). Unmodelled Effects in the Horizontal Velocity Field Determination: ASG-EUPOS Case Study. Artificial Satellites, 47(2), pp. 67-79.
  • Bosy J., (2013). Global, Regional and National Geodetic Reference Frames for Geodesy and Geodynamics. Pure and Applied Geophysics, vol. 171(6), pp 783-808.
  • Boucher, C. Altamimi, Z. (2011). Memo: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign (online at: http://etrs89.ensg.ign.fr/memoV8.pdf).
  • Cai Ch., Gao Y., (2007). Precise Point Positioning Using Combined GPS and GLONASS Observations. Journal of Global Positioning System, vol. 6(1), pp. 13-22.
  • Chen W., Hu C. W., Gao S., Chen Y.Q., Ding X.L., (2009). Error Correction Models and their Effects on GPS Precise Point Positioning. Survey Review, vol. 41(313), pp. 238-252.
  • Choy S., Zhang S., Lahaye F., Héroux P., (2013). A Comparison between GPS-Only and Combined GPS +GLONASS Precise Point Positioning. Journal of Spatial Science, vol. 58, pp. 169-190.
  • Collins, P., (2008). Isolating and estimating undifferenced GPS Integer ambiguities. Proceedings of ION-GNSS-2008 International Technical Meeting of the Satellite Division , San Diego, California, pp. 720-732.
  • Dawidowicz K., Krzan G., (2014), Accuracy of single receiver static GNSS measurements under conditions of limited satellite availability. Survey Review, vol. 46(337), pp. 278-287.
  • El-Mowafy A., (2009). Alternative Postprocessing Relative Positioning Approach Based on Precise Point Positioning. Journal of Surveying Engineering, Vol. 135(2), pp. 56-65.
  • El-Rabbany, A. (2006). Introduction to GPS: The Global Positioning System. 2nd revised edition. Artech House Publishers, Boston , USA . ISBN 1-59693-016-0.
  • EPN, Position Time Series. Multi-year EPN Solution. http://www.epncb.oma.be/_productsservices/timeseries/ [Accessed: 5 January 2017].
  • ESOC 2009: NAPEOS mathematical models and algorithms. Technical report, Darmstadt, Germany, Navigation Support Office, ESA/ESOC, 2009. DOPS-SYS-TN-0100-OPS-GN.
  • Gendt, G., Dick G., Soehne W., (1999). GFZ Analysis Center of IGS - Annual Report, 1998 IGS Technical Reports, IGS Central Bureau, Jet Propulsion Laboratory, Pasadena, CA, (eds K. Gowey, R. Neilan, A. Moore), November, pp. 79-87.
  • Ge M., Gendt G., Rothacher M., Shi C., Liu J., (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, vol. 82(7), pp. 389-399.
  • Geng J., Teferle F.N., Shi C., Meng X., Dodson A.H., Liu J., (2009). Ambiguity resolution in precise point positioning with hourly data. GPS solutions, vol. 13(4), pp. 263-270.
  • Geng J., Meng X., Teferle F.N., Dodson A.H., (2010). Performance of precise point positioning with ambiguity resolution for 1- to 4-hour observation periods. Survey Review, vol. 42(316), pp.155-165.
  • Golaszewski P., Wielgosz P., Stepniak K., (2017). Intercomparison and validation of GNSSIWV derived with G-Nut and Bernese software. Proceedings of 10th International Conference on Environmental Engineering (ICEE) Selected papers , 27-28 April 2017, Vilnius, Lithuania.
  • Hofmann-Wellenhof B., Lichtenegger H. Collins J., (2003). Global Positioning System: Theory and Practice. Springer-Verlag Wein New York.
  • IGS (2015). IGS site guidelines. Technical report, Pasadena, California, IGS Central Bureau, Jet Propulsion Laboratory, [Online] Available at: http://kb.igs.org/hc/enus/articles/202011433-Current-IGS-Site-Guidelines. [Accessed 14 February 2017].
  • Kalita J., Rzepecka Z., Szuman-Kalita I., (2014). The application of Precise Point Positioning in Geosciences. Proceedings of 9th International Conference on Environmental Engineering (ICEE) Selected papers, 22-23 May 2014, Vilnius, Lithuania.
  • Kleusberg, A., (1986). Ionospheric propagation effects in geodetic relative GPS positioning. Manuscripta Geodaetica, vol. 11, pp. 256-261.
  • Kouba J., Heroux P., (2001). Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solutions, Vol. 5(2), pp. 12-28.
  • Laurichesse, D., Mercier F.. (2007). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. Proceedings of ION-GNSS-2007 20th International Technical Meeting of the Satellite Division, Fort Worth, Texas, pp 839-848.
  • Lichten, S. M., Bar-Sever Y. E., Bertiger E. I., Heflin M., Hurst K., Muellerschoen R., Wu S. C., Yunck T. P., Zumberge J. F., (1995). GIPSY-OASIS II: A High precision GPS Data processing System and general orbit analysis tool, Technology 2006, NASA Technology Transfer Conference, Chicago, Il., Oct. 24-26.
  • Marty, J. C. (ed) (2009). Documentation algorithmique du programme GINS, Version 5 juillet 2009 (in French). http://www.igsaccnes.cls.fr/documents/gins/GINS_Doc_Algo.html.
  • Neilan, R.E., Zumberge J. F., Beutler G., Kouba J., (1997). The International GPS Service: A global resource for GPS applications and research. Proceedings of ION-GPS-97 10th International Technical Meeting of the Satellite Division of the Institute of Navigation, Kansas City, Missouri, pp. 883-889.
  • Petit G., Luzum B., (2010). IERS Conventions (2010). IERS Technical Note 36. Verlag des Bundesamts fnr Kartographie und Geodssie, Frankfurt am Main.
  • Paziewski J., Sieradzki R., Baryla R., (2017). High-rate GNSS positioning for precise detection of dynamic displacements and deformations: methodology and case study results. Proceedings of 10th International Conference on Environmental Engineering (ICEE) Selected papers, 27-28 April 2017, Vilnius, Lithuania.
  • Rabbou M. A., El-Rabbany A., (2015). PPP Accuracy Enhancement Using GPS/GLONASS Observations in Kinematic Mode. Positioning, vol. 6(1), pp. 1-6.
  • Roberts G. W., Tang X., Brown Ch., (2015). A review of satellite positioning systems for civil engineering. Proceedings of the Institution of Civil Engineers - Civil Engineering, vol. 168(4), pp. 185-192.
  • Schenewerk, M., Dillinger W., Mader G., (1999). NOAA/NGS Analysis Strategy Summary, 1998 IGS Technical Reports, IGS Central Bureau, at JPL, (eds K. Gowey, R. Neilan, A. Moore), November, pp. 99-105.
  • Springer T., Dilssner F., Escobar D., Flohrer C., Otten M., Svehla D., Zandbergen R., (2011). NAPEOS: The ESA/ESOC tool for Space Geodesy Geophysical Research Abstracts, vol. 13, EGU2011-8287.
  • TPI NETpro. Polish Nationwide network of GPS / GLONASS reference stations, https://global.topnetlive.com/poland [Accessed: Accessed 5 January 2017].
  • Szafranek, K., (2012). The problem of temporal validity of reference coordinates in the context of reliability of the ETRS89 system realization in Poland. Artificial Satellites, vol. 47(4), pp. 177-188.
  • Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., Webb, F. H., (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, vol. 102(B3), pp. 5005-5017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14524ad4-7c9d-4b65-888f-fe496c0ca78e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.