PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Second-order approximate refection coefficients of vertical transversely isotropic thin beds

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the periodicity and rhythmicity of sedimentation, short-term cycles are commonly developed in sedimentary strata. Under the assumption of a long seismic wavelength, such strata can be regarded as a seismic single thin bed with vertical transversely isotropic (VTI) characteristics. A thin interbed can be formed by the stacking of a series of isotropic and VTI single thin beds. In seismic inversion, the interference of multiples and mode-converted waves generated within and between thin beds and transmission losses are ignored. These interferences are hardly addressed in seismic data processing due to being submerged in first arrivals. In this work, to thin interbeds of isotropic and VTI single thin beds, we propose second order approximations of Kennett refection coefficients for PP-, SP-, PS-, and SS-waves, which consider the internal and interlayer wave propagation effects. The numerical analyses show that the proposed approximations are of high accuracy when the P-wave impedance difference in the VTI single thin bed is from−40 to 100% and of strong anisotropy. The proposed approximations can be used for the efficient and accurate simulation of the wavefields of media with thin interbedding, bringing great potential for the studies of the inversion methods for the internal property parameters of thin interbeds.
Czasopismo
Rocznik
Strony
1155--1169
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • MWMC Research Group, School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
autor
  • MWMC Research Group, School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
autor
  • MWMC Research Group, School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
Bibliografia
  • 1. Backus GE (1962) Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res 67(11):4427–4440
  • 2. Carcione JM, Kosloff D, Behle A (1991) Long-wave anisotropy in stratified media: a numerical test. Geophysics 56(2):245–254
  • 3. Castagna JP, Batzle ML, Eastwood RL (1985) Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 50(4):571–581
  • 4. Christopher J, Roger Y (1993) Implications of thin layers for amplitude variation with offset (AVO) studies. Geophysics 58(8):1200–1204
  • 5. Foster DJ, Lane FD, Zhao ZY (2017) A systematic approach for quantifying wave propagation in vertically inhomogeneous media. Geophys J Int 210(2):706–730
  • 6. Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density—the diagnostic basics for stratigraphic traps. Geophysics 39(6):770–780
  • 7. Graebner M (1992) Plane-wave reflection and transmission coefficients for a transversely isotropic solid. Geophysics 57(11):1512–1519
  • 8. Imhof MG (2003) Scale dependence of reflection and transmission coefficients. Geophysics 68(1):322–336
  • 9. Kennett BLN (1974) Reflections, rays, and reverberations. Bull Seismol Soc Am 64(6):1685–1696
  • 10. Kennett BLN (1983) Seismic wave propagation in stratified media. Cambridge University Press, Cambridge
  • 11. Kennett BLN, Kerry NJ (1979) Seismic waves in a stratified half space. Geophys J Int 57(3):557–583
  • 12. Liu YB, Schmitt DR (2003) Amplitude and AVO responses of a single thin bed. Geophysics 68(4):1161–1168
  • 13. Meissner R, Meixner E (1969) Deformation of seismic wavelets by thin layers and layered boundaries. Geophys Prospect 17(1):1–27
  • 14. Pan W, Kristopher A (2013) AVO/AVF analysis of thin-bed in elastic media. In: 83rd Annual International Meeting, SEG, Expanded Abstracts, pp 373–377
  • 15. Postma GW (1955) Wave propagation in a stratified medium. Geophysics 20(4):780–806
  • 16. Rüger A (2002) Reflection coefficients and azimuthal AVO analysis in anisotropic media. Society of Exploration Geophysics, Houston
  • 17. Schoenberg M, Protázio J (1992) “Zoeppritz” rationalized and generalized to anisotropy. J Seism Explor 1(2):125–144
  • 18. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954
  • 19. Treitel S, Robinson EA (1966) Seismic wave propagation in layered media in terms of communication theory. Geophysics 31(1):17–32
  • 20. Wang Y, Yang C, Lu J (2018) Dilemma faced by elastic wave inversion in thinly layered media. Chin J Geophys 61(3):1118–1135
  • 21. Werner U, Shapiro SA (1998) Intrinsic anisotropy and thin multilayering-two anisotropy effects combined. Geophys J Int 132(2):363–373
  • 22. Yang Z, Lu J (2020) Second-order approximation of the seismic reflection coefficient in thin interbeds. Energies 13(6):1465
  • 23. Yang C, Wang Y, Wang Y (2016) Reflection and transmission coefficients of a thin bed. Geophysics 81(5):N31–N39
  • 24. Yuan SY, Wang SX, Ma M, Ji YZ, Deng L (2017) Sparse bayesian learning-based time-variant deconvolution. IEEE Trans Geosci Remote Sens 55(11):6182–6194
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14523172-cc54-417e-b600-7ad01780ad6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.