PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Texture analysis as a tool for medical decision support. P. 1 Recent applications for cancer early detection

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza tekstur jako narzędzie wspomagania decyzji medycznych. Cz. 1 Najnowsze zastosowania do wczesnego wykrywania nowotworów
Języki publikacji
EN
Abstrakty
EN
A great number of works have been devoted to developing different medical decision support systems, based on an image data. Such systems combine a wide range of methods for digital image analysis and interpretation. It has been proven that one of the most useful sources of information encoded in the image is its texture. Texture Analysis (TA) provides many important discriminating characteristics, not normally perceptible with visual inspection. With properly chosen TA methods, an image-based diagnosis could be considerably improved. However, the choice of the methods is not an easy task and often depends on the nuances of each diagnostic problem. The present work provides an overview of the most frequently used methods for texture analysis (statistical, model-based, and filter-based) and shows their advantages and limitations. It also includes an overview of texture-based medical decision support systems, recently proposed for cancer detection and classification.
PL
W ciągu ostatnich dwudziestu lat zaproponowano wiele komputerowych systemów wspomagania decyzji medycznych, opierających się na danych obrazowych. Systemy te są w stanie zlokalizować patologicznie zmienione obszary, opisać właściwości rozpatrywanych tkanek, jak również dokonać ich klasyfikacji. Istotnym źródłem informacji zawartej w obrazie jest jego tekstura. Cyfrowa analiza tekstur pozwala wykryć znacznie więcej szczegółów obrazu, niż zwykła analiza wizualna. Odpowiedni dobór metod analizy tekstur może przyczynić się do znacznego podwyższenia liczby trafnie rozpoznanych schorzeń. Wybór ten często zależy od niuansów danego problemu diagnostycznego. Niniejsza praca stanowi przegląd najczęściej stosowanych metod analizy tekstur (statystycznych, opierających się na modelach, wykorzystujących filtry) oraz pokazuje ich zalety i ograniczenia. Zawiera również przegląd najnowszych systemów do wczesnego wykrywania i rozpoznawania nowotworów, opierających się na analizie tekstury.
Rocznik
Tom
Strony
61--84
Opis fizyczny
Bibliogr. 93 poz.
Twórcy
autor
  • Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
Bibliografia
  • [1] Duda, D.: Texture analysis as a tool for medical decision support. Part 2: Classification of liver disorders based on Computed Tomography images, Advances in Computer Science Research 11, 2014, pp. 85-108.
  • [2] Zhang, X., Kanematsu, M., Fujita, H., Zhou, X., Hara, T., Yokoyama, R., Hoshi, H.: Application of an artificial neural network to the computer-aided differentiation of focal liver disease in MR imaging, Radiol. Phys. Technol. 2(2), 2009, pp. 175-182.
  • [3] Shiraishi, J., Sugimoto, K., Moriyasu, F., Kamiyama, N., Doi, K.: Computeraided diagnosis for the classification of focal liver lesions by use of contrastenhanced ultrasonography, Medical Phys. 35(5), 2008, pp. 1734-1746. [4] Chabi, M.L., Borget, I., Ardiles, R, Aboud, G., Boussouar, S., Vilar, V., Dromain, C., Balleyguier, C.: Evaluation of the accuracy of a computer-aided diagnosis (CAD) system in breast ultrasound according to the radiologist’s experience, Acad. Radiol. 19(3), 2012, pp. 311-319.
  • [5] Tan, T., Platel, B., Huisman, H., Sanchez, C.I., Mus, R., Karssemeijer, N.: Computer-aided lesion diagnosis in automated 3-D breast ultrasound using coronal spiculation, IEEE Trans. Med. Imag. 31(5), 2012, pp. 1034-1042.
  • [6] Wang, Y., Wang, H., Guo, Y., Ning, C., Liu B., Cheng, H.D., Tian, J.: Novel computer-aided diagnosis algorithms on ultrasound image: effects on solid breast masses discrimination, J. Digit. Imaging 23(5), 2012, pp. 581-591.
  • [7] Agliozzo, S., De Luca, M., Bracco, C., Vignati, A., Giannini, V., Martincich, L., Carbonaro, L.A., Bert, A., Sardanelli, F., Regge, D.: Computer-aided diagnosis for dynamic contrast-enhanced breast MRI of mass-like lesions using a multiparametric model combining a selection of morphological, kinetic, and spatiotemporal features, Med. Phys. 39(4), 2012, pp. 1704-1715.
  • [8] Bhooshan, N., Giger, M., Lan, L., Li, H., Marquez, A., Shimauchi, A., Newstead, G.M.: Combined use of T2-weighted MRI and T1-weighted dynamic contrast-enhanced MRI in the automated analysis of breast lesions, Magn. Reson. Med. 66(2), 2011, pp. 555-564.
  • [9] Rakoczy, M., McGaughey, D., Korenberg, M.J., Levman, J., Martel, A.L.: Feature selection in computer-aided breast cancer diagnosis via dynamic contrastenhanced magnetic resonance images, J. Digit. Imaging 26(2), 2013, pp. 198- 208.
  • [10] Cai, H., Peng, Y., Ou, C., Chen, M., Li, L.: Diagnosis of breast masses from dynamic contrast-enhanced and diffusion-weighted MR: A machine learning approach, PLOS ONE 9(1), 2014, e87387, pp. 1-7.
  • [11] Pang, Z., Zhu, D., Chen, D., Li, L., Shao, Y.: A computer-aided diagnosis system for dynamic contrast-enhanced MR images based on level set segmentation and ReliefF feature selection, Computational and Mathematical Methods in Medicine, Article ID 450531, 2014, pp. 1-10.
  • [12] Agner, S.C., Soman, S., Libfeld, E., McDonald, M., Thomas, K., Englander, S., Rosen, M.A., Chin, D., Nosher, J., Madabhushi, A.: Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification, J. Digit. Imaging. 24(3), 2011, pp. 446-463.
  • [13] Nagarajan, M.B., Huber, M.B., Schlossbauer, T., Leinsinger, G., Krol, A., Wismuller, A.: Classification ofsmall lesions in breast MRI: Evaluating the role of dynamically extracted texture features through feature selection, J. Med. Biol. Eng. 33(1), 2013, pp. 59-68.
  • [14] Puech, P., Betrouni, N., Makni, N., Dewalle, A.S., Villers, A., Lemaitre, L.: Computer-assisted diagnosis of prostate cancer using DCE-MRI data: design, implementation and preliminary results, Int. J. Comput. Assist. Radiol. Surg. 4(1), pp. 1-10, 2009.
  • [15] Firjany, A., Elnakib, A., El-Baz, A., Gimel’farb, G., El-Ghar, M.A., Elmagharby, A.: Novel Stochastic Framework for Accurate Segmentation of Prostate in Dynamic Contrast Enhanced MRI, In Madabhushi, A., Dowling, J., Yan, P., Fenster, A., Abolmaesumi, P., Hata, N. (Ed): Lect. Notes Comput. Sc. 6367, Springer-Verlag Berlin Heidelberg, 2010, pp. 121-130.
  • [16] Vos, P.C., Hambrock, T., Barenstz, J.O., Huisman, H.J.: Computer-assisted analysis of peripheral zone prostate lesions using T2-weighted and dynamic contrast enhanced T1-weighted MRI, Phys. Med. Biol. 55(6), 2010, pp. 1719- 1734.
  • [17] Lopes, R., Ayache, A., Makni, N., Puech, P., Villers, A., Mordon, S., Betrouni, N.: Prostate cancer characterization on MR images using fractal features, Med. Phys. 38(1), 2011, pp. 83-95.
  • [18] Sung, Y.S., Kwon, H.J., Park, B.W., Cho, G., Lee, C.K., Cho, K.S., Kim, J.K.: Prostate cancer detection on dynamic contrast-enhanced MRI: computer-aided diagnosis versus single perfusion parameter maps, AJR Am. J. Roentgenol. 197(5), 2011, pp. 1122-1129.
  • [19] Niaf, E., Rouviere, O., Mege-Lechevallier, F., Bratan, F., Lartizien, C.: Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI, Phys. Med. Biol. 57(12), 2012, pp. 3833-3851.
  • [20] Duda, D., Kretowski, M., Mathieu, R., de Crevoisier, R., Bezy-Wendling, J.: Multi-image texture analysis in classification of prostatic tissues from MRI. Preliminary results. In Pietka, E., Kawa, J., Wieclawek, W. (Ed): Adv. Intell. Soft. Comp. 283, Springer, Switzerland, 2014, pp. 139-150.
  • [21] Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Henkjan H.: Computeraided detection of prostate cancer in MRI, IEEE Trans. Med. Imag. 33(5), 2014, pp. 1083-1092.
  • [22] Molina, J.F.G., Zheng, L., Sertdemir, M.. Dinter, D.J., Schonberg, S., Radle, M.: Incremental Learning with SVM for Multimodal Classification of Prostatic Adenocarcinoma, PLoS ONE 9(4), e93600, 2014, pp. 1-14.
  • [23] El-Baz, A., Beache, G.M., Gimel’farb, G., Suzuki, K., Okada, K., Elnakib, A., Soliman, A., Abdollahi, B.: Computer-aided diagnosis systems for lung cancer: challenges and methodologies, Int. J. Biomed. Imaging 2013, 942353, 2013, pp. 1-46.
  • [24] Ambrosini, R.D., Wang, P., O’Dell, W.G.: Computer-aided detection of metastatic brain tumors using automated 3-D template matching, J. Magn. Reson. Imaging 31(1), 2010, pp. 85-93.
  • [25] John, P.: Brain tumor classification using wavelet and texture based neural network, Int. J. Sci. Eng. Research 3(10), 2012, pp. 1-7.
  • [26] Patil, S., Udupi, V.R.: A Computer Aided Diagnostic System for Classification of Brain Tumors Using Texture Features and Probabilistic Neural Network, Int. J. Comput. Sc. Eng. Inf. Technol. Research 3(1), 2013, pp. 61-66.
  • [27] Islam, A., Reza, S.M.S., Iftekharuddin, K.M.: Multifractal Texture Estimation for Detection and Segmentation of Brain Tumors, IEEE Trans. Biomed. Eng. 60(11), 2013, pp. 3204-3215.
  • [28] Jayachandran, A., Dhanasekaran, R.: Brain tumor detection and classification of MR images using texture features and fuzzy SVM classifier, Res. J. Appl. Sci. Eng. Technol. 6(12), 2013, pp.2264-2269.
  • [29] Sachdeva, J., Kumar, V., Khandelwal, N., Ahuja, C.K.: Segmentation, feature extraction, and multiclass brain tumor classification J. Digit. Imaging. 26(6), 2013, pp. 1141-1150.
  • [30] Selvanayaki, K., Karnan, M.: CAD System for Automatic Detection of Brain Tumor through Magnetic Resonance Image-A Review, Int. J. Eng. Sc. Technol. 2(10), 2010, pp. 5890-5901.
  • [31] Haralick, R.M.: Statistical and structural approaches to texture, Proc. of the IEEE 67(5), 1979, pp. 786-804.
  • [32] Castellano, G., Bonilha, l., Li, L.M., Cendes, F.: Texture analysis of medical images, Clin. Radiol. 59(12), 2004, pp. 1061-1069.
  • [33] Hajek, M., Dezortova, M., Materka, A., Lerski R.A. (Ed): Texture Analysis for Magnetic Resonance Imaging, Med4Publishing, Prague, Czech Republic, 2006.
  • [34] Bankman, I.N.: Handbook of Medical Image Processing and Analysis, Second Edition, Academic Press, 2008.
  • [35] Nielsen, B., Albregtsen, F., Danielsen, H.E.: Statistical nuclear texture analysis in cancer research: a review of methods and applications, Crit. Rev. Oncog. 14(2-3), 2008, pp. 89-164.
  • [36] Szczypinski, P.M., Strzelecki, M., Materka, A., Klepaczko, A.: MaZda – A software package for image texture analysis, Comput. Meth. Prog. Bio. 94(1), 2009, pp. 66-76.
  • [37] Nailon, W.H.: Texture analysis methods for medical image characterisation, In Mao, Y. (Ed): Biomedical Imaging, InTech, Open, 2010, pp. 75-100. [
  • [38] Kassner, A., Thornhill, R.E.: Texture Analysis: A Review of Neurologic MR Imaging Applications, Am. J. Neuroradiol. 31, 2010, pp. 809-816.
  • [39] Tuceryan, M., Jain, A. K.: Texture analysis, In Chen, C.H., Pau, L.F., Wang, P.S.P. (Ed): The Handbook of Pattern Recognition and Computer Vision, World Scientific Publishing Co., Singapore, 2nd edition, 1998, pp. 207-248.
  • [40] Zhang, J., Tan, T.: Brief review of invariant texture analysis methods, Pattern Recognition 35(3), 2002, pp. 735-747.
  • [41] Xie, X.: A Review of Recent Advances in Surface Defect Detection using Texture analysis Techniques, Electron. Lett. Comp. Vision Image Anal. 7(3), 2008, pp. 1-22.
  • [42] Haralick, R. M., Shanmugam K., Dinstein I.: Textural features for image classification, IEEE Trans. Syst., Man, Cybern., Syst 3, 1973, pp. 610-621.
  • [43] Conners, R.W., Harlow, C.A.: Toward a structural textural analyzer based on statistical methods, Comput. Vision Graph. 12(3) 1980, pp. 224-256.
  • [44] Galloway, M.M.: Texture analysis using gray level run lengths, Comput. Vision Graph. 4(2), 1975, pp. 172-179.
  • [45] Chu, A., Sehgal, C.M., Greenleaf, J.F.: Use of gray value distribution of run lengths for texture analysis, Pattern Recognition Letters, 11(6), 1990, pp. 415- 420.
  • [46] Albregtsen, F., Nielsen, B., Danielsen, H.E.: Adaptive gray level run length features from class distance matrices, Proc. 15th Int. Conf. on Pattern Recognition, 3, 2000, pp. 738-741.
  • [47] Weszka, J.S., Dyer, C.R., Rosenfeld, A.: A Comparative Study of Texture Measures for Terrain Classification, IEEE Trans. Systems, Man, Cybernetics, 6, 1976, pp. 269-285.
  • [48] Lerski, R.A., Straughan, K., Shad, L., Boyce, D., Bluml, S., Zuna, I.: MR Image Texture Analysis – An Approach to Tissue Characterization, Magn. Reson. Imaging 11(8), 1993, pp. 873-887.
  • [49] Horng, M.H., Sun, Y.N., Lin, X.Z.: Texture feature coding method for classifi- cation of liver sonography, Comput. Med. Imag. Grap 26(1), 2002, pp. 33-42.
  • [50] Gonzalez, R.C., Woods, R.E.: Digital Image Processing, Second edition, Reading, MA: Addison-Wesley, 2002.
  • [51] Mandelbrot, B.: The Fractal Geometry of Nature, block W. H. Freeman and Co., NY, 1982.
  • [52] Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications, Second edition, Willey, 2003.
  • [53] Edgar, G.: Measure, Topology and Fractal Geometry, Second edition, SpringerVerlag, 2008.
  • [54] Chen, C., Daponte, J.S., Fox, M.D.: Fractal feature analysis and classification in medical imaging, IEEE Trans. Med. Imag. 8(2), 1989, pp. 133-142.
  • [55] Chen, E.L., Chung, P.C., Chen, C.L., Tsai, H.M., Chang, C.I.: An automatic diagnostic system for CT liver image classification, IEEE Trans. Biomed. Eng. 45(6), 1998, pp. 783-794.
  • [56] Li, J., Du, Q.: An improved box-counting method for image fractal dimension estimation, Pattern Recognition 42(11), 2009, pp. 2460-2469.
  • [57] Sankar, D., Thomas. T.: Fractal Features based on Differential Box Counting Method for the Categorization of Digital Mammograms, International Journal of Computer Information Systems and Industrial Management Applications 2, 2010, pp. 11-19.
  • [58] Landini, G., Rippin, J.W.: Notes on the implementation of the mass-radius method of fractal dimension estimation, Comput. Appl. Biosci. 9(5), 1993, pp. 547-550.
  • [59] Jones, C.L., Jelinek, H.F.: Wavelet packet fractal analysis of neuronal morphology, Methods 24(4), 2001, pp. 347-458.
  • [60] Pentland, A.P.: Fractal-Based Description of Natural Scenes, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(6), 1984, pp. 661-674.
  • [61] Maragos, P., Sun, F.K.: Measuring the Fractal Dimension of Signals: Morphological Covers and Iterative Optimization, IEEE Trans. Signal Process. 41(1), 1993, pp. 108-121.
  • [62] Backes, A.R., Bruno, O.M.: A new approach to estimate fractal dimension of texture images, In Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (Ed): Lect. Notes Comput. Sc. 5099, Springer, 2008, pp. 136-143.
  • [63] Kilic, K.I., Abiyev, R.H.: Exploiting the synergy between fractal dimension and lacunarity for improved texture recognition, Signal Processing 91(10), 2011, pp. 2332-2344.
  • [64] Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 1989, pp. 674- 693.
  • [65] Laws, K.I.: Textured image segmentation, PhD thesis, University of Southern California, 1980.
  • [66] Peng, Y., Jiang, Y., Antic, T., Giger, M.L., Eggener, S., Oto, A.: A study of T2- weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer, Proc. SPIE 8670, 86701H, 2013.
  • [67] Ginsburg, S.B., Rusu, M., Kurhanewicz, J., Madabhushi, A.: Computer extracted texture features on T2w MRI to predict biochemical recurrence following radiation therapy for prostate cancer, Proc. SPIE 9035, 903509, 2014.
  • [68] Vapnik, V.N.: The Nature of Statistical Learning Theory, Second Edition, Springer, NY, 2000.
  • [69] Freund, Y., Shapire, R.: A decision-theoretic generalization of online learning and an application to boosting, J. Comput. Syst. Sci. 55(1), 1997, pp. 119-139.
  • [70] Clausi, D.A., Jernigan, M.E.: Designing Gabor filters for optimal texture separability, Pattern Recognition 33(11), 2000, pp. 1835-1849.
  • [71] Duda, R., Hart P., Stork D.: Pattern Recognition, Second Edition, John Willey and Sons, 2001.
  • [72] Fukunaga, K.: Introduction to Statistical Pattern recognition, Second edition, Academin Press, San Diego, CA, USA, 1990.
  • [73] Hanley, J.A.: Receiver operating characteristic (ROC) methodology: the state of the art, Crit. Rev. Diagn. Imaging 29(3), 1989, pp. 307-335.
  • [74] Hosmer, D.W., Lemeshow, S., Sturdivant R.X.: Applied Logistic Regression, Third Edition, John Wiley & Sons, Inc., Hoboken, NJ, US, 2013.
  • [75] Bishop, C.M.: Neural Networks for Pattern Recognition, Oxford University Press, NY, USA, 1995.
  • [76] Ripley, B.D.: Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge, UK, 1996.
  • [77] Costa, L. da F., Cesar, R.M.: Shape Analysis and Classification: Theory and Practice, CRC Press, Inc., Baca Raton, FL, USA, 2000.
  • [78] Turner, M.R.: Texture discrimination by Gabor functions, Biol. Cybern. 55(2- 3), 1986, pp. 71-82.
  • [79] Sun, C., Wee, W.G.: Neighboring gray level dependence matrix for texture classification, Comput. Vision, Graph. Imag. Process. 23(3), 1983, pp. 341- 352.
  • [80] Amadasun, M., King, R.: Textural features corresponding to textural properties, IEEE Trans. Syst. Man Cybern. 19(5), 1989, pp. 1264-1274.
  • [81] Specht, D.F.: Probabilistic Neural Networks, Neural Networks 3(1), 1990, pp. 109-118.
  • [82] Pearson, K.: On lines and planes of closest fit to systems of points in space, Phil. Mag. 2(6), 1901, pp. 559-572.
  • [83] Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., Ahuja, C.K.: A novel content-based active contour model for brain tumor segmentation, Magn. Reson. Imaging 30(5), 2012, pp. 694-715.
  • [84] Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 2002, pp. 971-987.
  • [85] Idrissa, M., Acheroy , M.: Texture classification using Gabor filters, Pattern Recognition Letters 23(9), 2002, pp. 1095-1102.
  • [86] Zhang, J., Tan, T., Ma, L.: Invariant texture segmentation via circular Gabor filters, Proc: 16th Int. Conf. Pattern Recognition vol. 2, 2002, pp. 901-904.
  • [87] Tiwari, P., Prasanna, P., Rogers, L., Wolansky, L., Badve C., Sloan, A., Cohen, M., Madabhushi, A.: Texture descriptors to distinguish radiation necrosis from recurrent brain tumors on multi-parametric MRI, Proc, SPIE, 9035, 90352B, 2014.
  • [88] Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image Code, IEEE Trans. Commun. 31(4), 1983, pp. 532-540.
  • [89] Dalal N., Triggs, B.: Histograms of oriented gradients for human detection, IEEE Computer Society Conf. Comput. Vision and Pattern Recognition, CVPR2005 vol. 1, 2005, pp. 886-893.
  • [90] Random Forests, Machine Learning 45(1), 2001, pp. 5-32.
  • [91] Yang, C., Chuang, L., Yang, C.: IG-GA: a hybrid filter/wrapper method for feature selection of microarray data, J. Med. Biol. Eng. 30(1), 2010, pp. 23-28.
  • [92] Chan, T.F., Vese, L.A.: Active contours without edges, IEEE Trans. Image Process. 10(2), 2001, pp. 266-277.
  • [93] Kononenko, I.: Estimating attributes: analysis and extensions of relief, In Bergadano, F., de Raedt, L. (Ed): Lect. Notes Comput. Sc. 784, Springer-Verlag Berlin Heidelberg, 1994, pp. 171-182.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1451a90c-7420-4a2c-a442-a403b56f1c2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.