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Abstract: A great number of works have been devoted to developing different medical
decision support systems, based on an image data. Such systems combine a wide range of
methods for digital image analysis and interpretation. It has been proven that one of the
most useful sources of information encoded in the image is its texture. Texture Analysis
(TA) provides many important discriminating characteristics, not normally perceptible with
visual inspection. With properly chosen TA methods, an image-based diagnosis could be
considerably improved. However, the choice of the methods is not an easy task and often
depends on the nuances of each diagnostic problem.

The present work provides an overview of the most frequently used methods for texture anal-
ysis (statistical, model-based, and filter-based) and shows their advantages and limitations.
It also includes an overview of texture-based medical decision support systems, recently
proposed for cancer detection and classification.
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A list of abbreviations is given at the end of this article.

1. Introduction

Different imaging modalities are presently available to assist clinicians in the detec-
tion and the diagnosis of human pathologies. Among them are: Computed Tomogra-
phy (CT), Positron Emission Tomography (PET), Single Photon Emission Computed
Tomography (SPECT), Magnetic Resonance Imaging (MRI), Ultrasonography (US),
or Optical Imaging. With a constant improvement of image acquisition devices, the
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amount of diagnostic information obtained within a single study has considerably
increased. In such a situation, the interpretation of image content based only on its
visual inspection goes far beyond the human abilities. Indeed, an unarmed human
eye can distinguish barely 100 gray levels, whereas the gray-scale images obtained
nowadays (still commonly used) can encode many thousands of gray levels.

Since an experienced physician is not able to read all the useful image data
without any additional equipment, a great deal of work has been devoted to develop
different methods for (semi)automatic medical image analysis, interpretation, and
recognition. As a result, many Computer-Aided Diagnosis (CAD) systems have been
proposed over the past two decades. These systems combine a broad range of image
analysis methods (including image segmentation and tissue characterization tech-
niques), feature selection, and classification algorithms. The literature describes many
examples of image-based CAD systems that have already found their application in
various problems, concerning different organs and/or different imaging modalities.
Among them, we can enumerate the systems for hepatic diseases recognition, based
on the CT images (they will be detailed in the second part of the work [1]), on the
MR images [2], or on the contrast-enhanced ultrasonography [3]. Another example
concerns the breast lesion classification based on the ultrasound images [4—6] or on
the Dynamic Contrast Enhanced (DCE) MR images [7-13]. The recognition of the
prostate cancers on the basis of the DCE-MR images were also studied [14-22]. An
exhaustive overview of the CAD systems for lung cancer recognition, based on the
CT and/or the PET images can be found in [23]. Finally, the usefulness of CAD
systems for brain tumor detection and classification from MRI were investigated
in [24-30].

The advantage of CAD systems is that they improve considerably the image-
based diagnosis, which reduces the necessity of using other methods, such as a fine
needle aspiration biopsy or a surgical biopsy. Moreover, medical imaging is becom-
ing continuously cheaper, faster, and less wasteful. Finally, it is certainly much less
invasive (or even non-invasive) in comparison with many gold standard procedures.

The choice of the most appropriate methods for (semi)automatic image analysis
and interpretation is not a trivial task. The works presented so far have shown that
each diagnostic problem requires practically a re-validation of methods previously
tested in similar domains. However, a good selection of such methods is crucial to
guarantee the satisfactory tissue recognition. In 1979, Haralick stated that one of
the most important sources of analyzed image region could be its texture [31]. It
characterizes the spatial relationships between gray levels describing pixels within a
considered image region (so called "Region of Interest”, commonly abbreviated as
ROI). Since then, numerous review studies have shown that texture analysis could
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be highly useful in various problems related to the recognition of medical (and also
nonmedical) images [32-38], as it provides a crucial information in terms of tissue
discrimination. Moreover, many works have revealed that digital image analysis en-
ables to detect the high order texture properties not accessible to visual inspection
(see, for example, [31,39-41])).

The aim of present work is to review the most frequently used methods for ex-
traction of textural features. Three main TA approaches are considered: statistical,
model-based, and filter-based. The remaining sections are organized as follows. In the
next section, different methods of texture analysis are presented. Section 3 presents
some recent results of their application in several diagnostic domains. Finally, in the
last section, the main conclusions are drawn.

2. Overview of texture analysis methods

2.1 Gray Level Histogram

Features derived from a Gray Level Histogram (GLH) are based solely on the distri-
bution of pixel gray levels and do not consider the relationships between neighboring
pixels. They provide knowledge on the most and the less often occurring gray lev-
els, on the concentration of the gray levels around their average, or on the degree of
asymmetry in their distribution. On the contrary, they do not contain any information
neither about the possible direction of the texture, nor about its structure. Nevertheless
they are often used because of their invariability to translation or rotation, simplic-
ity, and low memory and time requirements for their calculation. The most popular
first-order features are:

— range of gray levels,

— mean of gray levels (measure of image brightness),

— median gray level (the second quartile),

— gray level energy (indicates how the gray levels are distributed),

— variance of gray levels (characterizes the distribution of gray levels around the
mean),

— gray level skewness (measures the asymmetry of the gray-level histogram),

— gray level kurtosis (indicates the relative flattening of the gray-level histogram),

— coefficient of variation (the ratio of the standard deviation to the mean).

2.2 Co-Occurrence Matrices

Co-Occurrence Matrices (COM) were introduced by Haralick et al. [42]. This method
consists in analyzing all the possible pairs of pixels, spaced apart by a fixed distance,
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d, and arranged in a given direction, 0. Four pixel alignment directions (0°, 45°,
90°, and 135°), and different distances between the pixels in pairs can be considered.
Typically, d takes small values. A combination (d,0) determines thus unequivocally
the relative position of pixels composing the pairs to analyze. A co-occurrence matrix
C(d,0) is of size G x G, where G is the number of gray levels possible to be encoded
in an image. Each element of co-occurrence matrix, ¢;; (i, j =0,...,G— 1), represents
a probability of occurrence of a pair of pixels with gray levels of i and j, for the first
and for the second pixel, respectively. Several texture characteristics can be obtained
on the basis of a co-occurrence matrix [42]:

— energy or angular second moment (measure of homogeneity of gray levels char-
acterizing the pixels within an analyzed ROI),

— contrast or inertia (measure of contrast or local variations in pixel gray levels),

— inverse difference moment (measure of local homogeneity),

— entropy (quantifies a degree of randomness of the pixel gray levels),

— correlation (measures linear dependency of gray levels on neighboring pixels).

Other features can be calculated from the sums of probabilities that relate to
specified intensity sums or differences [34]. In practice, this requires the construction
of vectors whose components are the co-occurrence probabilities of pairs of pixels
with a determined sum or difference of the gray levels. All possible sum / differ-
ence values are taken into account. The probabilities form a vector and are sorted in
increasing order of corresponding sum or difference values. Some features derived
from such vectors are:

sum average,
sum variance,

sum entropy,
difference average,
— difference variance,
— difference entropy.

Conners et al. [43] proposed two additional COM-based features, that measure
the skewness (the lack of symmetry) of the matrix C(d,9):

— cluster shade,
— cluster prominence.

For non-directed textures, several values of the same feature, corresponding to
different arrangement directions, 0, but obtained for the same distance between pixels
in pairs, can be averaged. Often feature values corresponding to different distances,
d, are also averaged.
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2.3 Run Length Matrix

Run Length Matrix (RLM) features are based on probabilities of pixel runs of each
possible length, arranged in a certain direction [44]. Like in previous method, four
standard directions of pixel runs are considered, 6 = 0°, 45°, 90°, or 135°. A run-
length matrix, R(60), has G columns and M rows, where G is the number of image
gray levels, and M is the maximum length of pixel run which can exist in an analyzed
image region. The element r,,o (m = 1,...,M, and g = 0, ..., G) of a run length matrix
R(0) is the number of existing pixel runs of a gray level g, having a length of m, and
oriented in a direction 0.

Galloway initially proposed the following features, derived form a run length
matrix.

short run emphasis,

long run emphasis,

gray level non-uniformity (distribution),
run length non-uniformity (distribution),
— fraction of image in runs.

The proposition of two additional features can be found in [45]:

— low gray level runs emphasis,
— high gray level runs emphasis.

Yet another work [46] proposes to use a run length entropy as a texture feature.
Also in this method, the values of the same feature corresponding to different
directions of pixel runs can be averaged.

2.4 Gray Level Difference Matrices

Gray Level Difference Matrices (GLDM) are constructed with consideration of only
the absolute values of differences between the gray levels of pixels, still considered
in pairs [47]. Similarly to a COM-based method, also here four pixel alignment di-
rections 0, and different distances, d, between the pixels in pairs can be considered.
Further, all possible absolute differences in gray levels that can be encoded in the
image are taken into account. For each absolute difference, the probability of finding
a pair of pixels with just such a difference in the gray levels is calculated. The prob-
abilities sorted in increasing order of corresponding absolute gray level differences
form a vector I(d,0) = [lp, 1, ...,lg_1]", where G is the number of gray levels possible
to be encoded in an image.
Five textural features can be derived from the /(d, 0) vector:

65



Dorota Duda

— mean (measures a level of texture diversity),

— energy or angular second moment (measure of homogeneity of gray levels),

— contrast or inertia (measure of intensity contrast between a pixel and its neigh-
bors),

— inverse difference moment (measure of the local homogeneity),

— entropy (quantifies a degree of randomness of the pixel gray levels).

All above features could be averaged when they are calculated for different 6
and/or d parameters.

2.5 Gradient Matrices

Gradient-based features were introduced by Lerski et al. [48]. A gray-level gradient
at a particular image point is a function of the differences between the gray levels
of its neighboring pixels, aligned on vertical and horizontal lines passing through
the point. Often a neighborhood of 3 x 3 pixels or 5 x 5 pixels is considered. The
Gradient Matrix (GM) contains the values of the absolute gradient at each point of an
analyzed image region, excluding its boundaries.

Features derived from a gradient matrix are the following:

mean,

variance,

skewness,

kurtosis,

percentage of pixels with nonzero gradient.

They can provide the information on the uniformity, homogeneity, or the roughness
of the texture. They may also indicate the presence or absence of edges.

2.6 Texture Feature Coding Method

Texture Feature Coding Method (TFCM) was proposed by Horng et al. [49]. The
method consists of three steps. First, an image is transformed. The transformation
consists of assigning to each pixel (except for the pixels located at the edges of a
considered ROI) a value that measures a degree of heterogeneity (of variation, of
diversity) of the local gray levels of its neighbors. The authors call this measure a
"Texture Feature Number" (TFN). Only a neighborhood of 3 x 3 pixels is considered.
Afterwards, a histogram of Texture Feature Numbers, and co-occurrence matrices are
constructed, based on a transformed image. Finally, several texture descriptors are
obtained, either from a TFN histogram:

66



Texture analysis as a tool for medical decision support. Part 1: Recent applications...

coarseness,
homogeneity,

mean convergence (indicates how close the texture approximates the mean),
variance (measures deviation of TFNs from the mean),

either from a TFN-based co-occurrence matrix:

— entropy,
— code similarity (assesses the density of the same TFNs in a 3 x 3 neighborhood),
— resolution similarity (measures the local homogeneity of TFNs).

2.7 Autocorrelation Coefficients

Autocorrelation Coefficients (AC) [50] expresses the correlation of the gray levels
describing pixels within a defined neighborhood. It is the function of the vertical (Ax)
and the horizontal (Ay) distance between the considered pixels in pairs. Usually such
distances are relatively small. In order to normalize the autocorrelation coefficients
a gray level of each pixel is decreased by the mean gray level. Normalized autocor-
relation coefficients are independent of the image brightness, and can be regarded as
textural features. They can provide knowledge on the spatial relationship between the
texture patterns, and the average size of texture patterns.

2.8 Fractal Model (FM)

Fractal Model (FM) was described in several works [51-53]. Unfortunately, each of
them gives different definitions of a fractal object. Mandelbrot characterized fractals
as self-similar objects, whose parts are similar to the whole, and whose topological
dimension is not an integer [51]. The fractal dimension of an object reflects the extent
to which this object fills the space or the rate of its diversity, the degree of irregularity
of the object.

A gray-level image can be considered as a topographic surface in three-
dimensional space, where two dimensions are those of the image plane and the third
one (height) is the gray level of image pixels. The fractal dimension of such a surface
can be used as a texture descriptor. It can measure the irregularity and the roughness
of the texture. Irregular surfaces (corresponding to a diversified textures) have rel-
atively high fractal dimension, while the smooth ones are characterized by the low
fractal dimension.

So far, several methods for calculating a fractal dimension of a texture have been
reported in the literature. Among them we can mention: the approaches based on the
fractional Brownian motion model [54, 55], the box-counting methods [56, 57], the
mass-radius methods [58], the wavelet-based methods [59], and others [60-63].
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2.9 Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) of an image consists in its convolution with two
filters, the low-pass and the high-pass one, separately throughout the image rows and
separately throughout the image columns. The Mallat algorithm for DWT [64] di-
vides the image into the four sub-images, each of which is linearly two times smaller
than the decomposed image. Each sub-image can then be divided in the same man-
ner. Thus multiple resolution levels are obtained. Four sub-band images created at
each decomposition step are denoted: d-, d™H, dHL and d"". They are created by
applying, respectively: the low-pass filter for rows and columns (LL), the low-pass
filter for rows and the high-pass filter for columns (LH), the high-pass filter for rows
and the low-pass filter for columns (HL), the low-pass filter for rows and columns
(LL). The component d™* is created by calculating the average of disjoint groups of
2 x 2 pixels, using Haar transform. It is therefore an approximation (simplified rep-
resentation) of the transformed image. Further sub-bands represent the vertical (LH),
the horizontal (HL) and the diagonal (HH) image information. On the basis of them
an edge energy at three directions can be calculated. It is also possible to analyze the
energy distribution in each sub-band image. The image d’* is used only for DWT
calculation at the next scale.

2.10 Laws’ Texture Energy measures

Laws’ Texture Energy (LTE) measures [65] are useful for estimating the frequency of
the image elements, such as ripples, edges, or spots. Laws proposed to transform the
images using linear filters. During the transformation, each image pixel is assigned a
value that is a combination of initial gray levels of pixels belonging to a neighborhood
of a transformed pixel. Usually two types of neighborhood are considered: 3 x 3
pixels and 5 x 5 pixels. The weights of the neighboring pixels are defined by a zero-
sum convolution matrix (so-called Laws’ mask). For each pair of asymmetric masks,
the resulting images could be added. In this case, images obtained with an application
of symmetric masks are multiplied by two. On the basis of a transformed image, the
entropy can be calculated. Also, the filtered images can be once again subjected to
further transformation, that results in creation of texture energy images. Finally, the
features such as: mean, variance, skewness, and kurtosis can be calculated from the
resulting images.

3. Recent applications for cancer early detection

The following describes the most recently published works, considering textural fea-
tures as useful tissue descriptors. Each of the systems aims at cancer detection and
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characterization from MRI images. Three main diagnostic problems are considered:
prostate cancer diagnosis, brain tumor diagnosis, and breast lesion classification.

3.1 Prostate cancer diagnosis

The (semi)automated CAD systems using a texture analysis as a prostatic tissue de-
scriptor are still not broadly developed. Most of the existing works are based mainly
on the pharmacokinetic models, employing the signal-to-time curves, in order to find
perfusion parameters (e.g. [18]). Such models give an information about the propaga-
tion of contrast product, extracted from the T1-weighted DCE MRI sequences. Other
systems exploit also diffusion weighted image features (e.g. [66]), not based on textu-
ral properties. However some works exploiting the potential of TA in prostatic tissue
differentiation have appeared in recent few years [17,19-22,66, 67].

Lopes et al. [17] employed fractal and multifractal textural features to character-
ize prostatic tissues on T2-weighted MR images. Their system was able to recognize
two types of tissue: a tumorous and a non-tumorous one. The fractal dimension was
computed using the variance method. The multifractal spectrum was estimated by a
modified multifractional Brownian motion model. The classification was performed
with Support Vector Machines (SVM) [68] and an adaptive boosting voting scheme
(AdaBoost) [69]. The best result was obtained by AdaBoost classifier: 85% and 93%,
for sensitivity and specificity, respectively. Moreover, the results obtained by the pro-
posed system were better than those corresponding to the application of classical tex-
tural features, derived from co-occurrence matrices, wavelets, or Gabor filters [70].
The fractal method turned also to be most robust against signal intensity variations.

Niaf et al. [19] analyzed simultaneously different MRI sequences (T1-, T2-, and
diffusion-weighted) in order to differentiate between: (i) malignant vs benign pro-
static tissues, and (ii) malignant vs nonmalignant, but suspicious ones. The CAD
system proposed in their work combined functional parameters, extracted from DCE
images, together with textural features derived from the three considered MRI se-
quences. First-order and second-order (COM-based) textural features were utilized.
Four classifiers were applied: nonlinear SVM, Linear Discriminant Analysis (LDA)
[71], k-Nearest Neighbors (k-NN) [72] and Bayesian one [72]. The system per-
formances were assessed by the areas under the Receiver Operating Characteristic
(ROC) Curves (AUC) [73]. The best result was achieved with the SVM classifier and
was 0.89 and 0.82, for the first (i) and for the second (ii) discrimination problem,
respectively.

Peng et al. [66] assessed the utility of T2-weighted MRI texture features and dif-
fusion weighted image features in distinguishing prostate cancer from normal tissue.
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Here, the LDA and the areas under the ROC curves were used to evaluate the perfor-
mance of each feature. Among many tested texture characteristics, the sum average
turned to be the best feature. Nevertheless it did not outperform some of the Appar-
ent Diffusion Coefficient (ADC) features, that measure the magnitude of diffusion (of
water molecules) within a tissue. The combination of three features (sum average
and two ADCs) yielded AUC values of 0.94 and 0.89 on the images acquired with
the Phillips and the GE scanner, respectively.

Duda et al. [20] proposed to analyze simultaneously triplets of prostate MR im-
ages, corresponding to the same prostate slice, but derived from different image se-
ries: the contrast-enhanced T1-, the T2-, and the diffusion-weighted one. Two classes
of prostatic tissue were differentiated: tumorous and healthy. Six different texture
analysis methods were used: GLH-, COM-, RLM-, GM-, AC-, and FM-based. Their
ability of characterizing prostatic tissue was assessed with three classifiers: Logistic
Regression (LR) [74], Neural Network (NN) [75,76] and SVM. The 10-fold cross-
validation [71] was used to assess the classification accuracies. The best overall clas-
sification result exceeded 99% and corresponded to the application of the SVM clas-
sifier.

Ginsburg et al. [67] tried to predict the probability of developing biochemical
recurrence risk (associated with raised risk of metastases and prostate cancer-related
mortality) following the radiation therapy. In their work they evaluated the efficiency
of different textural features, extracted from the T2-weighted images. They consid-
ered: first-order statistical features, gradients (involving image convolutions with So-
bel and Kirsch operators [77]), co-occurrence matrices-based, and Gabor wavelet
features [78]. For each feature, its prognostic potential and its contribution to classi-
fication results was assessed. As a classifier, a Logistic Regression was used. Despite
of poor resolution of images, available for the experiments, the area under the ROC
curve for the best three features (the Gabor wavelet ones) reached 0.83.

Litjens et al. [21] developed a fully automated computer-aided detection sys-
tem, which was able to differentiate between patients with and without prostate can-
cer. Their study based on: T2-weighted, proton density-weighted, dynamic contrast
enhanced, and diffusion-weighted images. Thus several types of features could be
used. They were: based on signal intensity, representing pharmacokinetic behavior,
anatomical features, blobness, and finally — texture descriptors, based on Gaussian
texture models. These latter characteristics contributed to the ability of the system to
achieve a performance comparable to the one achieved by radiologists.

Finally, Molina et al. [22] proposed a system that combined different features
(anatomic, textural, and functional) in order to recognize three classes of prostatic
tissue: cancerous, unhealthy non-cancerous, and healthy. Three different series of
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MR images were considered in the work: T2-weighted, Dynamic-Contrast Enhanced
Plasma Flow (DCE-PF) and DCE Mean Transit Time (DCE-MTT). Nevertheless, the
texture information was extracted from only the structural T2-weighted images. In the
work, three groups of features were used: the first-order statistical descriptors, and
the second-order ones, derived from: a Neighboring Gray Level Dependence Matrix
(NGLDM) [79] and a Neighborhood Gray-Tone Difference Matrix (NGTDM) [80].
Experiments showed that the use of texture descriptors could provide more relevant
discriminative information than the considered functional parameters. The average
sensitivity and specificity obtained with the system was of 84.46% and 78.06%, re-
spectively.

3.2 Brain tumor diagnosis

A few algorithms have been recently developed for brain tumor detection and classi-
fication, based on MR images of different modalities.

In 2012, John [25] proposed a system for brain tumor classification from T2-
weighted MR images. The system was able to recognize the three tissue types: nor-
mal, non-cancerous (benign) brain tumor and cancerous (malignant) brain tumor. The
tissue characterization process consisted of two stages. First, the images were decom-
posed with the wavelet transform. Next — the co-occurrence matrix-based textural fea-
tures were extracted from the LH and HL sub-bands of the first five levels of wavelet
decomposition. Five textural features were considered: energy, contrast, correlation,
homogeneity and entropy. Finally, they were fed into a Probabilistic Neural Network
(PNN) [81] for further classification and tumor detection. The system achieved the
classification accuracy of near 100%.

Patil et al. [26] tried to differentiate the four grades of Astrocytoma (from Grade
I to Grade IV). Their approach consisted of several stages: image preprocessing, seg-
mentation, feature extraction and classification. Feature extraction involved using the
co-occurrence techniques, providing a set of 11 features. Finally, a Probabilistic Neu-
ral Network has been developed to differentiate between different grades of consid-
ered brain tumor. The overall accuracy of the system (obtained on the test set) was of
94.87%.

The system presented by Islam et al. [27] was designed for the detection and the
segmentation of brain tumors from non-enhanced T1-weighted, T2-weighted, and
FLAIR images. Two different tumor groups were considered in their study: astrocy-
toma and medulloblastoma. The tissue was characterized here using fractal and mul-
tifractal (based on fractional Brownian motion model) methods. The features corre-
sponding to different modalities were fused. As a classifier, an extension of AdaBoost
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algorithm was used. The system was tested on 14 patients with over 300 images and
showed its high efficacy.

Jayachandran et al. [28] evaluated a system for detection and classification of
brain tumors on T1-weighted post contrast (gadolinium-based) images. Their sys-
tem was able to find tissue characteristics, to reduce the feature space, and to clas-
sify tissues into two categories: tumorous and non-tumorous one. Texture analysis
was performed with the co-occurrence matrices. The Principal Component Analy-
sis (PCA) [82] was used in order to reduce the feature space. Finally — the Fuzzy
based Support Vector Machine was applied for a classification. Experiments were
conducted on 80 brain MRI images. The proposed methodology resulted in quite
high rates of correctly classified cases (more than 95%).

Sachdeva et al. [29] developed a system aimed at the differentiation of six
tissue classes. They corresponded to the primary brain tumors: astrocytoma, mul-
tiform glioblastoma, childhood tumor — medulloblastoma, meningioma, secondary
tumor — metastatic, and normal regions. Their analyses involved using post-contrast
T1-weighted MR images. First, tumors were segmented with the content-based ac-
tive contour model [83]. Then over two hundred intensity and texture features were
used as tissue characteristics. Texture analysis considered: Laplacian of Gaussian
(LoG) filters [77], co-occurrence matrices, rotation invariant Local Binary Patterns
(LBP) [84], directional Gabor texture features [85], gray-level histogram, and rota-
tion invariant circular Gabor features [86]. Due to the large number of candidate fea-
tures, a feature space was reduced with the PCA. Then, an artificial Neural Network
was applied in order to perform the classification. The robustness of the proposed
system was tested using quite a large database (856 ROIs), with a partitioning of data
into a training and a test set. The overall classification accuracy was of 85.23%.

Most recently, Tiwari et al. [87] assessed different groups of textural features, in
terms of their ability to differentiate radiation necrosis (a radiation induced treatment
effect) from recurrent brain tumors. In fact this task is very difficult to the human
observer, because both pathological processes results in almost the same morpholog-
ical appearance on standard MRI. So far, the diagnosis was possible only through a
surgical intervention. The aim of the study was thus to find a set of features that could
accentuate subtle differences between both pathologies, and — further — to determine
which MRI protocol could provide the most discriminating information. Three MR
image series were considered: T1-weighted, T2-weighted and FLAIR. The exam-
ined textural features were derived from: co-occurrence matrices, neighboring gray-
level dependence matrices, Laplacian pyramids [88], Laws’ texture energy measures,
and Histogram of Gradient orientations (HoG) [89]. In total, 119 features were as-
sessed. Each feature was assessed by Principal Component Analysis-based Variable
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Importance Projection (PCA-VIP), developed by authors. Then a random-forest clas-
sifier [90] was used to differentiate between considered pathologies. The experiments
showed that HoG, COM, and Laws’ features were the most suitable ones for the
problem solution. The best MRI image series turned out to be the contrast-enhanced
T1-weighted one.

3.3 Breast lesion classification

The breast lesion characterization and differentiation from MRI images involves of-
ten a simultaneous analysis of images derived from different series, like T1-weighted
(non-enhanced or contrast-enhanced), T2-weighted, diffusion-weighted, or others. In
this case it is important not only to find potentially reliable pathology-related fea-
tures, but also to combine properly the tissue descriptors corresponding to different
image series. Here, textural features are often combined with other lesion descriptors:
morphological, intensity kinetic features (based on signal-to-time curve), or shape
descriptors.

Bhooshan et al. [8] combined textural features from both DCE T1- and T2-
weighted MR images in order to recognize benign and malignant breast lesions. For
the T1-weighted sequences, only the first post-contrast image was used for texture
analysis. As texture descriptors, again the COM-based features were used. The con-
trast product propagation was characterized by typical kinetic parameters obtained
from signal-to-time curves. The system was able to perform an automatic lesion
segmentation, then — the features were automatically extracted. In the experimental
stage, a stepwise feature selection was performed by Linear Discriminant Analysis.
The selected features were merged by with Bayesian artificial Neural Network clas-
sifier. The leave-one-out cross-validation [71], and the areas under the ROC curve
were used to assess the performance of tested sets of features. The experiments
showed, that the combination of texture characteristics, obtained from both T1-,
and T2-weighted images may outperform the conventional analysis of T1-weighted
contrast-enhanced sequences. When all the features were considered, the best result
was achieved. It gave the area under the ROC curve of 0.85.

Agner et al. [12] also tried to distinguish malignant from benign lesions. In their
work, they compared several approaches to lesion characterization, giving different
types of tissue descriptors: morphological features, signal intensity kinetic features,
and textural features. The latter ones were based on gray-level histogram, gradients,
and co-occurrence matrices. The study introduced a notion of "textural kinetics", that
characterized texture evolution under contrast product propagation in DCE MRI. At
first, textural features were calculated at each moment of contrast product propaga-
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tion, and the "textural kinetics curve" was created basing on the set of feature values.
Afterwards, a third order polynomial was fitted to such curve in order to characterize
its shape. Four polynomial coefficients constituted the feature vector. Feature vectors
were classified with the SVM and the AdaBoost classifiers. Experiments on 41 cases,
showed that textural kinetics features outperformed the other ones (morphological,
descriptors of signal intensity kinetics, and these based on "static" textures). The best
classification accuracy was about 90%.

Nagarajan et al. [13] used a multi-image texture analysis for breast lesion clas-
sification. In order to differentiate two types of small lesions (benign and malignant)
they analyzed simultaneously five post-contrast T1-weighted images. A multi-image
texture was characterized by five values of the same textural feature. Each value cor-
responded to a different moment of contrast agent propagation. Only the COM-based
textural features were considered. The tissue recognition was performed with Sup-
port Vector Regression and a fuzzy k-Nearest Neighbor classifier. The classifier per-
formances were determined through the ROC analysis. The highest AUC value ob-
served was of 0.82. Experiments also showed that textural features extracted from
the third and fourth post-contrast image contributed the most to the correct tissue
differentiation.

Recently, Cai et al. [10] combined dynamic contrast-enhanced and diffusion-
weighted images (DWI), also to recognize benign lesions and malignant ones. The
lesion regions were obtained with a semi-automated segmentation method. Then,
four types of tissue descriptors were considered: kinetic, morphological, textural (co-
occurrence matrix-based), and DWI features. In order to select the most robust fea-
tures, a hybrid filter-wrapper algorithm [91] was applied. Finally, various classifiers
(SVM, Bayesian, k-NN, LR) were used to evaluate the diagnostic performance of the
selected features. The study comprised of 234 female patients. The classification ac-
curacy was assessed with a 10-fold cross-validation and ROC characteristics. Finally,
seven selected features (among them — three textural features) were found to be statis-
tically different between the malignant and the benign groups, and their combination
gave the highest classification accuracy — 93%.

Still in 2014, Pang et al. [11] presented a fully automated CAD system for the
classification of malignant and benign masses. The system included a breast segmen-
tation method, the mass segmentation method (described in [92]), feature extraction
stage, feature selection (with the ReliefF [93] algorithm), and the SVM classifier. As
tissue descriptors, morphological and textural features were used. Like in previous
study, the texture analysis was performed using a co-occurrence matrix-based ap-
proach. A database comprised 120 cases. For the leave-one-out classifier assessment
method, the accuracy was of 90.0%.
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4. Conclusion

The present study enumerated the most commonly used methods for texture analysis.
In addition to a brief description of the methods, it also included a short interpretation
of the meaning of the parameters derived from each method. An overview of recently
proposed works, considering textural features as reliable tissue descriptors in differ-
ent classification problems, showed that the list of TA methods, presented in Section
2, is not exhaustive. The variety of methods proposed in the literature is far much
larger. Experiments show, that each diagnostic problem, each image modality, may
require the use of newer and newer procedures guaranteeing satisfactory classifica-
tion results. Nevertheless, it could be noticed, that some groups of textural features
show their huge potential more often than others. Among them the most powerful
ones are the statistical features, obtained from the co-occurrence matrices. Such fea-
tures were considered in almost all the quoted systems. The first-order statistics are
less popular, however they are also tested because of their simplicity. Quite often a
fractal model is used to find reliable texture characteristics. Also good are methods
involving an image filtering.

To sum up the first part of the work, it can be concluded, that texture analysis has
repeatedly demonstrated its valuable potential in the cancer early detection and dif-
ferentiation. The implementation of many referred systems might certainly improve
the image-based diagnosis, reducing the need for invasive procedures. The further
development of imaging techniques, and the continuous work to improve the digital
image-analysis methods may result in physicians more frequently refraining from the
use of any invasive procedure.

Abbreviations

AdaBoost: Adaptive Boosting algorithm
ADC: Apparent Diffusion Coefficient

AUC: Area Under the ROC Curve

CAD: Computer-Aided Diagnosis

COM: Co-Occurrence Matrix

CT: Computed Tomography

DCE: Dynamic Contrast Enhanced (in MRI)
DCE-MTT: DCE Mean Transit Time (in MRI)
DCE-PF: DCE Plasma Flow (in MRI)

DWI: Diffusion-Weighted Imaging (in MRI)
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DWT: Discrete Wavelet Transform

FLAIR: Fluid-Attenuated Inversion Recovery (in MRI)
FM: Fractal Model

GLDM: Gray Level Difference Matrix

GLH: Gray Level Histogram

GM: Gradient Matrix

HoG: Histogram of Gradient orientations

k-NN: k-Nearest Neighbors (classifier)

LBP: Local Binary Pattern

LoG: Laplacian of Gaussian

LR : Logistic Regression (classifier)

LTE: Laws’ Texture Energy

MR: Magnetic Resonance

MRI: Magnetic Resonance Imaging
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NGLDM: Neighboring Gray Level Dependence Matrix
NGTDM: Neighborhood Gray-Tone Difference Matrix
NN: Neural Network (classifier)

PCA: Principal Component Analysis

PCA-VIP: PCA-based Variable Importance Projection
PET: Positron Emission Tomography

PNN: Probabilistic Neural Network (classifier)

RLM: Run Length Matrix

ROC: Receiver Operating Characteristic

ROI: Region of Interest

SPECT: Single Photon Emission Computed Tomography
SVM: Support Vector Machines (classifier)

T1: longitudinal (or spin-lattice) relaxation time (in MRI)
T2: transverse (or spin-spin) relaxation time (in MRI)
TA: Texture Analysis

TFCM: Texture Feature Coding Method

TFN: Texture Feature Number

US: Ultrasonography
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ANALIZA TEKSTUR JAKO NARZEDZIE
WSPOMAGANIA DECYZJI MEDYCZNYCH.
CZESC 1: NAJNOWSZE ZASTOSOWANIA
DO WCZESNEGO WYKRYWANIA NOWOTWOROW

Streszczenie: W ciagu ostatnich dwudziestu lat zaproponowano wiele komputerowych sys-
temOéw wspomagania decyzji medycznych, opierajacych si¢ na danych obrazowych. Systemy
te sa w stanie zlokalizowac¢ patologicznie zmienione obszary, opisa¢ wlasciwosci rozpatry-
wanych tkanek, jak réwniez dokona¢ ich klasyfikacji. Istotnym Zrédtem informacji zawartej
w obrazie jest jego tekstura. Cyfrowa analiza tekstur pozwala wykry¢ znacznie wigcej szcze-
g6téw obrazu, niz zwykta analiza wizualna. Odpowiedni dobér metod analizy tekstur moze
przyczyni¢ si¢ do znacznego podwyzszenia liczby trafnie rozpoznanych schorzen. Wybér
ten czgsto zalezy od niuanséw danego problemu diagnostycznego.

Niniejsza praca stanowi przeglad najczesciej stosowanych metod analizy tekstur (statystycz-
nych, opierajacych si¢ na modelach, wykorzystujacych filtry) oraz pokazuje ich zalety i
ograniczenia. Zawiera réwniez przeglad najnowszych systeméw do wczesnego wykrywa-
nia i rozpoznawania nowotworéw, opierajacych si¢ na analizie tekstury.

Stowa kluczowe: obrazowanie medyczne, analiza obrazéw, tekstura, selekcja cech, wspo-

maganie decyzji medycznych, diagnoza wspomagana komputerowo

Artykut zrealizowano w ramach pracy statutowej S/W1/2/2013.
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