PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zagadnienie przyczepności w betonie zbrojonym, przegląd stanu wiedzy. Cz.2

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Harmony of bond behavior in reinforced concrete. Part two
Języki publikacji
PL EN
Abstrakty
PL
Praca elementów żelbetowych jako monolitycznych w znacznej mierze zależy od przyczepności pomiędzy zbrojeniem a betonem. Przyczepność w sposób bezpośredni wpływa na stany graniczne użytkowalności konstrukcji, poprzez oddziaływanie na szerokość rozwarcia i rozstaw rys oraz na ugięcie. W przypadku gdy nie zostanie zapewniona odpowiednia długość zakotwienia prętów zbrojeniowych zjawisko to może stanowić główny czynnik wpływający na graniczną nośność elementów żelbetowych. Współcześnie, większość zależności opisujących wytrzymałość wiązania betonu do zbrojenia ma charakter empiryczny i wyznaczone one zostały metodami statystycznymi. W związku z tym są to formuły w znacznym stopniu podatne na badawcze dane wejściowe. Zastosowanie tych zależności w różnych sytuacjach obliczeniowych może generować duże błędy. Niezależnie od stopnia poprawności modelu analitycznego i norm obliczeniowych, przyjęta przez daną normę zależność doświadczalna nie w pełni oddaje rzeczywistość. Dlatego też, konieczne jest ustalenie jednoznacznej zależności dla zachowania konstrukcji w sytuacjach praktycznych. Celem poniższej analizy jest podkreślenie braku szerszych badań nad wzrostem efektywności mechanizmu przyczepności dzięki zapewnieniu odpowiedniego stopnia skrępowania betonu w żelbetowych elementach konstrukcyjnych.
EN
The monolithic behavior of reinforced concrete elements largely depends on bond behavior between reinforcement and concrete. Bonding directly influences structure's serviceability by affecting crack width, crack distribution and deflection. Bonding may also be a significant factor in determining the ultimate capacity of the reinforced concrete elements if the development length is not adequately provided. To date, most of the expressions for bond strength are empirical and based on statistics methodology. Thus, these equations are highly dependent on the test data used. Errors may be great if these equations are directly applied into different situations. Despite the appropriateness of the current analytical models and design standards, the established empirical relationships of the design standards do not recreate practical situations exactly. Therefore, finding a clear correlation with structural performance in practical position is needed. The intention of this study is to highlight the lack of further investigation on increasing the effectiveness of the bond mechanism by providing a certain level of confinement in the structural members.
Czasopismo
Rocznik
Strony
384--395
Opis fizyczny
Bibliogr. 74 poz., il., tab.
Twórcy
  • Faculty of Civil Engineering, University Technology Malaysia, Johor, Malaysia
autor
  • Faculty of Civil Engineering, University Technology Malaysia, Johor, Malaysia
  • Faculty of Civil Engineering, University Technology Malaysia, Johor, Malaysia
autor
  • Faculty of Civil Engineering, University Technology Malaysia, Johor, Malaysia
Bibliografia
  • 1. R. Abdullah, J. Cairns, “Fundamental Tests on the Effect of an Epoxy Coating on Bond Strength”, ACI Materials Journal (1994).
  • 2. ACI Committee 408, “Abstract of: state-of-the-art-report: bond under cyclic loads”, American Concrete Institute Materials Journal, 88, 6, 669-673 (1991).
  • 3. ACI Committee 408, “Bond Under Cyclic Loads”, Journal of the American concrete Institute (1992).
  • 4. ACI Committee 408, “Bond and development of straight reinforcing bars in tension (ACI 408-03) “. American Concrete Institute, Farmington Hills, MI, p. 49 (2003).
  • 5. ACI 408.2R-92, “Bond under cyclic loads”, ACI Committee 408, 32 (2005).
  • 6. ACI 318R-08, “Building code requirements for structural concrete (318-08) and commentary”, ACI Committee 318, 471 (2008).
  • 7. J. Adajar, T. Yamaguchi, H. Imai, “An Experimental Study on the Tensile Capacity of Vertical Bar Joints in a Precast Shearwall” Proceedings, Japan Concrete Institute, 15, 2, 1255-1261 (1993).
  • 8. M. Alavi-Fard, H. Marzouk, , “Bond Behavior of High Strength Concrete Under Reversed Pull-out Cyclic Loading”, Canadian Journal of Civil Engineering, 29, 2, 191-200 (2002).
  • 9. L. Amleh, S. Mirza, “Corrosion Influence on Bond between Steel and Concrete”, ACI Structural Journal, 96, 3, 415–423 (1999).
  • 10 Bibiana Maria, Daniel Ernesto Lopez, and Rodolfo Francisco Danesi, “Bond-slip in reinforced concrete elements”, Journal of structural engineering © ASCE/ November (2005).
  • 11. CEB-FIP, ‘Model Code 1990’, p. 437, ISBN 0 7277 1696 Thomas Telford, London 1993.
  • 12. J. Cairns, “An Analysis of the Ultimate Strength of Lapped Joints of Compression Reinforcement,” Mag. Concr. Res., 31, 106, 19-27 (1979).
  • 13. J. Cairns, J. Jirsa, S. L. McCabe, “Bond of reinforcement in concrete”, fib
  • 14. Bulletin 10, Chapter 5, “Bond of Fusion Bonded Epoxy Coated Reinforcement”, Lausanne, pp. 217-243, ISSN 1562-3610, ISBN 2-88394-050-9 (2000).
  • 15. J. Cairns, K. Jones, “Influence of rib geometry on strength of lapped joints: an experimental and analytical study”, Mag. Concr. Res., 47, 172, 253-262 (1995), Discussion 49, 180, 259-262 (1997).
  • 16. J. Cairns, G. A. Plizzari, “Towards a harmonised European bond test”. Materials and Structures / Matériaux et Constructions, 36, pp. 498-506 (2003).
  • 17. K. Charles, Kankam, “Relationship of bond stress, steel stress, and slip in reinforced concrete”, Journal of structural engineering, 79-85 (1997).
  • 18. O. C. Choi, H. Hadje-Ghaffari, D. Darwin, S. L. McCabe, “Bond of Epoxy-Coated Reinforcement to Concrete: Bar Parameters,” ACI Materials Journal, 88, 2, 207-217 (1991).
  • 19. O. C. Choi, W. S. Lee, “Interfacial Bond Analysis of Deformed Bars to Concrete”, ACI Structural Journal, 99, 6, 750-755 (2002).
  • 20. A. P. Clark, (1949), “Bond of Concrete Reinforcing Bars” ACI JOURNAL, Proceedings, 46, Nov., pp. 161-184 (1949).
  • 21. E. Cosenza, G. Manfredi, R. Realfonzo, “Analytical modeling of bond between FRP reinforcing bars and concrete.” Proc., 2nd Int. RILEM Symp. (1995).
  • 22. E. Cosenza, G. Manfredi, R. Realfonzo, (1996), “Bond characteristics and anchorage length of FRP rebars.” Proc., 2nd Int. Cant on Advanced Compos. Mat. in Bridge Struct., M. EI-Badry, ed., (1996).
  • 23. E. Cosenza, G. Manfredi, R. Realfonzo, “Behavior and Modeling of Bond of FRP Rebars to Concrete”, Journal OF Composites for Constructions/ MAY (1997).
  • 24. A. Einea, T. Yamane, M. K. Tadros, “Grout-filled pipe splices for precast concrete construction”, Precast/Prestr. Concrete I J, 40, 1, 82–93 (1995).
  • 25. D. Darwin, K. G. Eheneze, “Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars”, ACI Structural Journal, 90, 6, 646-657 (1993).
  • 26. D. Darwin, M. L. Tholen, E. K. Idun, J. Zuo, “Splice Strength of High Relative Rib Area Reinforcing Bars”, ACI Structural Journal, 93, 1, 95-107 (1996).
  • 27. R. Eligehausen, “Bond in Tensile Lapped Splices of Ribbed Bars with Straight Anchorages”, Publication 301, German Institute for Reinforced Concrete, p. 118, Berlin 1979 (in German).
  • 28. R. Eligehausen, E. P. Popov, V. V. Bertero, “Local bond stress-slip relationships of deformed bars under generalized excitations.” Rep. No. 83/23, Earthquake Engrg. Res. Ctr. (EERC), Univ. of California, Berkeley, California 1983.
  • 29. M. R. Esfahani, B. Rangan, “Bond Between Normal Strength and High Strength Concrete (HSC) and Reinforcing Bars in Splices in Beams”, AC1 Structural Journal, 95, 3, 272-280 (1998).
  • 30. F. Xu, Z. Wu, J. Zheng, Y. Hu, Q. Li, “Experimental Study on the Bond Behavior of Reinforcing Bars Embedded in Concrete Subjected to Lateral Pressure”, Journal of Material in Civil Engineering © ASCE, January 2012.
  • 31. Y. Goto, “Cracks formed in concrete around deformed tension bars”, J. Am. Concrete Instit., 68, 4, 244 (1971).
  • 32. H. Wang, An analytical study of bond strength associated with splitting of concrete cover”, Engineering Structures, 31, 968-975 (2009).
  • 33. P. R. Jeanty, D. Mitchell, M. S. Mirza, “Investigation of „Top Bar‟ Effects in Beams”, ACI Structural Journal, 85, 3, 251-257 (1988).
  • 34. D. H. Jiang, S. P. Shah, A. T. Anderian, “ Study of the Transfer of Tende Forces by Bond”, AC1 Journal, 81, 3, 251-259 (1984).
  • 35. G. S. Lee, “Parametric studies of sleeve connector using steel pipe with spiral steel for precast concrete connection”, Bsc. UniversitiTeknologi Malaysia 2009.
  • 36. C. T. Lim, “The effect of pitch distance of steel spiral reinforcement to the performance of grouted sleeve connector under direct tensile load”, Undergraduate, UniversitiTeknologi Malaysia 2010.
  • 37. J. H. Ling, A. Rahman, A. Z. Hamad, et al., “Structural performance of splice connector for precast concrete structures”, In: Joint conference 7th Asia Pacific Structural Engineering & Construction Conference (APSEC 2009) & 2nd European Asian Civil Engineering Forum (EACEF 2009). Pulau Langkawi, Malaysia: Universiti Teknologi Malaysia (UTM), Universitas Pelita Harapan (UPH) 2009.
  • 38. J. H. Ling, A. Rahman, A. Z. Hamid, “Performance of corrugated aluminium sleeve connector under direct tensile load”, 2nd engineering conference on sustainable engineering (ENCON 08). 18–19 December Kuching, Sarawak, Malaysia: University Malaysia Sarawak (UNIMAS) 2008.
  • 39. J. H. Ling, A. Rahman, I. S. Ibrahim, et al., “Tensile performance of ribbed hollow section splice sleeve connector under direct tensile load”, 2nd construction industry research achievement international conference (CIRAIC 2009). Kuala Lumpur, Malaysia: Construction research institute of Malaysia (CREAM), Construction industry development board (CIDB) 2009.
  • 40. H. Y. Loh, “Development of grouted splice sleeve and its performance under axial tension”, Msc. UniversitiTeknologi Malaysia 2008.
  • 41. G. K. Loo, “Parametric study of grout-filled splice sleeve integrated with flexible aluminium tube for precast concrete connection”, Bsc. UniversitiTeknologi Malaysia 2009.
  • 42. H. Luaay, “Analytical Modeling of Bond Stress at steel Concrete Interface Due to Corrosion”, M.Sc. thesis, Ryerson University 2011.
  • 43. J. J. Luke, B. S. Hamad, J. O. Jirsa, J. E. Breen, “The Influence of Casting Position on Development and Splice Length of Reinforcing Bars”, Research Report No. 242-1, Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, Tex., p. 153, 1981.
  • 44. L. A. Lutz, P. Gergely, G. Winter, “Mechanics of Bond and Slip of Deformed Reinforcing Bars in Concrete”, Research Report No. 324, Department of Civil Engineering, Cornell University, New York, USA 1966.
  • 45. H. Martin, “Bond Performance of Ribbed Bars (Pull-Out-Tests) – Influence of Concrete Composition and Consistency “, International Conference – Bond in Concrete, Paisley, Scotland, pp. 289–299 (1982).
  • 46. H. Martin, P. Noakowski, “Bond behavior in reinforced concrete” (only available in German), Research Report IV, München Technical University, also ‘Verbundverhalten von Betonstählen, Untersuchungen auf der Grunlage von Ausziehversuchen’, Shriftenreihe of the DeutscherAusschussfürStahlbeton, Heft 319, Berlin 1981.
  • 47. S. M. Mirza, M, J. Houde, “Study of Bond Stress-Slip Relationships in Reinforced Concrete”, ACI Journal, 76, 2, 19-47 (1979).
  • 48. M. A. Safan, “ Behaviour of fiber reinforced concrete beams with spliced tension steel reinforcement”, Structural Engineering and Mechanics, 43, 5, 623-636 (2012).
  • 49. M. Moosavi, A. Jafari, A. Khosravi, “Bond of cement grouted reinforcing bars under constant radial pressure”, Cem. Concr. Comp. 27, 11, 103–9 (2005).
  • 50. K. Nagatomo, T. Kaku, “Bond behavior of deformed bars under lateral compressive and tensile stress”, Proceeding of an international Conference, Riga Technical University 1992.
  • 51. A. H. Nilson, (1968), “Nonlinear Analysis of Reinforced Concrete by the Finite Element Method”, ACI Journal, Proceedings, 65, 9, 757-766 (1968).
  • 52. A. H. Nilson, “Internal Measurement of Bond-Slip”, ACI Journal Proceedings, 69, 7, 439-441 (1972).
  • 53. O. C. Choi, W. S. Lee, “ Interfacial Bond Analysis of Deformed Bars to Concrete”, ACI Structural Journal/November-December 2002.
  • 54. C. O. Orangun, J. O. Jirsa, J. E. Breen, “Reevaluation of test data on development length and splices”, ACI Journal, Proceedings, 74, 3, 114-122 (1977).
  • 55. R. Fico, “Limit States Design of Concrete Structure Reinforced with FRP Bars”, PhD. thesis, University of Naples Federico 2008.
  • 56. G. Rehm, “Uber die Grunlagen des VerbundesZwischen Stahl und Beton” DeutscherAusschussfijrStahlbeton, Heft 138, Wilhelm Ernest und Sohn, Berlin, Germany 1961.
  • 57. R. Park, T. Paulay., “Reinforced concrete structure”, Textbook, ISBN 0-471-65917-7, 1975.
  • 58. RILEM/CEB/FIP, “Bond test for reinforcing steel: 2. Pullout Test”, Recommendation RC 6, 1978.
  • 59. P. J. Robins, I. G. Standish, (1984), “The influence if lateral pressure upon anchorage bond” Magazine of Concrete Research, 36, 129 (1984).
  • 60. S. Quayyum, “Bond Behaviour of Fibre Reinforced Polymer (FRP) Rebars in Concrete”, M.Sc. thesis, The College of Graduate Studies (Civil Engineering) The University Of British Columbia (Okanagan) 2010.
  • 61. Soroushian, Parviz; Choi, Ki-Bong; Park, Gill-Hyun; Aslani, Farhang, “Bond of Deformed Bars to Concrete: Effects of Confinement and Strength of Concrete”, ACI Material Journal, 88, 3, 227-232 (1991).
  • 62. . Hong, S.-K. Park, “Uniaxial Bond Stress-Slip Relationship of Reinforcing Bars in Concrete”, Advances in Materials Science and Engineering, Article ID 328570, p. 12 (2012). of the art report, Federal Institute of Technology Lausanne, Swiss 2000.
  • 63. R. Tepfers, “A theory of bond applied to overlapping tensile reinforcement splices for deformed bars”, Publication 73:2, p. 328, Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden 1973.
  • 64. R. Tepfers, “Cracking of concrete cover along anchored deformed reinforcing bars”, Mag. Concr. Res. 31, 106, 3–12 (1979).
  • 65. A. J. Tibbetts, M. G. Oliva, L. C. Bank, “Durable fiber reinforced polymer bar splice connections for precast concrete structures”, Composites &Ploycon. Tampa, FL USA: American composites manufacturers association; 15–17 January 2009.
  • 66. T. Ichinose, Y. Kanayama, Y. Inoue, J. E Bolander Jr., “size effect on bond strength of deformed bars”, Institute of technology, Gokiso, Showa, Nagoya 466-8555, Japan 2004.
  • 67. B. Tighiouart, B. Benmokrane, D. Gao, “Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars”, Construction and Building Materials, 12, 453-462 (1998).
  • 68. L. Torre-Casanova, L. Jason, X. Davenne, Pinelli, “ Confinement effects on the steel–concrete bond strength and pull-out failure”, Engineering Fracture Mechanics, 97, 92–104 (2013).
  • 69. R. A. Treece, J. O. Jirsa, “Bond Strength of Epoxy-Coated Reinforcing Bars”, ACI Materials Journal, 86, 2, 167-174 (1989).
  • 70. R. E. Untrauer, R. L. Henry, “Influence of normal pressure on bond strength”, ACI J, 65, 5, 577–85 (1965).
  • 71. X. Wang, X. A. Liu, “strain-softening model for steel–concrete bond”, Cem. Concr. Res., 33, 1669–1673 (2003).
  • 72. Y. Gan, “Bond Stress and slip Modeling in Nonlinear Finite Element Analysis of Reinforced Concrete structure”, M.Sc. thesis, Department of Civil Engineering University of Toronto 2000.
  • 73. J. Zuo, D. Darwin, “Bond Strength of High Relative Rib Area Reinforcing Bars”, SM Report No. 46, p. 350, University of Kansas Center for Research, Lawrence, Kansas, USA, 1998.
  • 74. J. Zuo, D. Darwin, “Splice Strength of Conventional and High Relative Rib Area Bars in Normal and High-Strength Concrete”, ACI Structural Journal, 97, 4, 630-641 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-144c3781-db65-4e08-bcb9-6363a59fd549
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.