PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrical and optical properties of new Pr3+-doped PbWO4 ceramics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polycrystalline samples of new scheelite-type tungstates, Pb1−3x xPr2xWO4 with 0.0098 ⩽ x ⩽ 0.20, where denotes cationic vacancies have been successfully prepared by a high-temperature solid-state reaction method using Pr2 (WO4)3 and PbWO4 as the starting reactants. The influence of the Pr3+ substitution in the scheelite framework on the structure and optical properties of prepared new ceramic materials has been examined using powder X-ray diffraction method (XRD) and UV-Vis-NIR spectroscopy. The results of dielectric studies of Pb1−3x xPr2xWO4 samples showed both low values of dielectric constant (below 14) and loss tangent (below 0.2). The electrical conductivity and thermoelectric power measurements revealed a low conductivity (∼2 × 10−9 S/m) and the sign change of thermoelectric power around the temperature of 366 K suggesting the p-n transition. These results are discussed in the context of vacancy, acceptor and donor levels as well as the Maxwell-Wagner model.
Wydawca
Rocznik
Strony
530--536
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • University of Silesia, Institute of Physics, Uniwersytecka 4, 40-007 Katowice, Poland
  • West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Department of Inorganic and Analytical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Department of Inorganic and Analytical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland
autor
  • University of Silesia, Institute of Physics, Uniwersytecka 4, 40-007 Katowice, Poland
  • University of Silesia, Institute of Physics, Uniwersytecka 4, 40-007 Katowice, Poland
autor
  • University of Silesia, Institute of Physics, Uniwersytecka 4, 40-007 Katowice, Poland
Bibliografia
  • [1] NOVOTNY R., BECK R., DÖRING W., HEJNY V., HOFSTAETTER A., KORZHIK M., METAG V., RÖMER K., STRÖHER H., Radiat. Meas., 33 (2001), 615.
  • [2] KOBAYASHI M., ISHII M., USUKI Y., Nucl. Instr. Meth. Phys. Res. A, 406 (1998), 442.
  • [3] FELLER R.P., GENDNER N., HOLM U., JOHNSON K.F., MEYER-LARSEN A., THIES S., Nucl. Instr. Meth. Phys. Res. A, 486 (2002), 785.
  • [4] LECOMTE P., LUCKEY D., NESSI-TEDALDI F., PAUSS F., RENKER D., Nucl. Instr. Meth. Phys. Res. A, 587 (2008), 266.
  • [5] HUHTINEN M., LECOMTE P., LUCKEY D., NESSITEDALDI F., PAUSS F., Nucl. Instr. Meth. Phys. Res. A, 545 (2005), 63.
  • [6] KOBAYASHI M., USUKI Y., ISHII M., YAZAWA T., HARA K., TANAKA M., NIKL M., BACCARO S., CECILIA A., DIEMOZ M., DAFINEI I., Nucl. Instr. Meth. Phys. Res. A, 404 (1998), 149.
  • [7] LECOQ P., DAFINEI I., AUFFRAY E., SCHNEEGANS M., KORZHIK M.V., MISSEVITCH O.V., PAVLENKO V.B., FEDOROV A.A., ANNENKOV A.N., KOSTYLEV V.L., LIGUN V.D., Nucl. Instr. Meth. Phys. Res. A, 365 (1995), 291.
  • [8] BACCARO S., BORGIA B., CECILIA A., DAFINEI I., DIEMOZ M., NIKL M., MONTECCHI M., Radiat. Phys. Chem., 52 (1998), 635.
  • [9] BURACHAS S., BODNAR V., BORODENKO YU., KATRUNOV K., MARTINOV V., NAGORNAYA L., RYZHIKOV V., TAMULAITIS G., GUTBROD H., MANKO V., J. Cryst. Growth, 198/199 (1999), 881.
  • [10] NESSI-TEDALDI F., Nucl. Instr. Meth. Phys. Res. A, 408 (1998), 266.
  • [11] LONGO E., Nucl. Instr. Meth. Phys. Res. A, 384 (1996), 225.
  • [12] ORGANTINI G., Nucl. Phys. B, 61B (1998), 59.
  • [13] SHIMIZU H., SAKAMOTO Y., HASHIMOTO T., ABE K., ASANO Y., KINASHI T., MATSUMOTO T., MATSUMURA T., OKUNO H., YOSHIDA H.Y., Nucl. Instr. Meth. Phys. Res. A, 447 (200), 467.
  • [14] CAVALLARI F., Nucl. Phys. B, 61B (1998), 449.
  • [15] KOZMA P., BAJGAR R., KOZMA P. JR., Rad. Phys. Chem., 65 (2002), 127.
  • [16] GONG G., SHEN D., REN G., ZHANG H., YIN Z., J. Cryst. Growth, 235 (2002), 320.
  • [17] MOREAU J.M., GLADYSHEVSKII R.E., GALEZ P.H., PEIGNEUX J.P., KORZHIK M.V., J. Alloy. Compd., 284 (1999), 104.
  • [18] HUANG Y., FENG X., XU Z., ZHAO G., HUANG G., LI S., Solid State Commun., 127 (2003), 1.
  • [19] CHEN W., INAGAWA Y., OMATSU T., TATEDA M., TAKEUCHI N., USUKI Y., Opt. Commun., 194 (2001), 401.
  • [20] HUANG Y., SEO H.J., FENG Q., YUAN S., Mater. Sci. Eng. B-Adv, 121 (2005), 103.
  • [21] HUANG Y., ZHU W., FENG X., LIU Z., MAN Z., YIN Z., Opt. Mat., 23 (2003), 443.
  • [22] PIĄTKOWSKA M., TOMASZEWICZ E., J. Therm. Anal. Calorim., 126 (2016), 111.
  • [23] NASSAU K., LEVINSTEIN H.J., LOIACONO G.M., J. Phys. Chem. Solids, 26 (1965), 1805.
  • [24] TAUPIN D., J. Appl. Crystallogr., 6 (1973), 380.
  • [25] SAWICKI B., GROŃ T., TOMASZEWICZ E., DUDA H., GÓRNY K., Ceram. Int., 41 (2015), 13080.
  • [26] URBANOWICZ P., PIĄTKOWSKA M., SAWICKI B., GROŃ T., KUKUŁA Z., TOMASZEWICZ E., J. Eur. Ceram. Soc., 35 (2015), 4189.
  • [27] TAUC J., GRIGOROVICI R., VANCU A., Phys. Status Solidi, 15 (1966), 627.
  • [28] WOOD D.L., TAUC J., Phys. Rev. B., 5 (1972), 3144.
  • [29] HIPPEL VON A., Dielectrics and Waves, Artech House, London, 1995, p.228.
  • [30] KUANG W., NELSON S.O., Trans. ASAE, 41 (1998), 173.
  • [31] FRENKEL J., Phys. Rev., 54 (1938) 647.
  • [32] EARNSHAW A., Introduction to Magnetochemistry, Academic Press, London and New York, 1968, p.29.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14411f57-19be-4df9-91ab-517768df4656
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.