PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Universal System for Detection and Compensation of Current Sensor Faults in Three-Phase Power Electronic Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article discusses the universal current sensor fault detection and compensation mechanism, which can be applied in three-phase power electronics (PE) symmetrical system. The mechanism is based on the assumption that a symmetrical system can be described using different components in the stationary reference frame. The solution given in article as a Cri-base detector was tested in electrical drives with induction motors (IMs) and permanent magnet synchronous motors (PMSMs). This study also proves that the same algorithm can work stable in active rectifier systems. Such an application of this detector has not been previously reported in the literature. The article describes the detection of various types of faults in different phases. The fault-tolerant voltage-oriented control (FTVOC) of an active rectifier is compared with previously described solutions for IMs and PMSMs. By analysing in various types of systems, the work proves the universality of the detector based on Cri markers.
Wydawca
Rocznik
Strony
267--278
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Electrical Machines, Drives and Measurements, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
  • Department of Electrical Machines, Drives and Measurements, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
Bibliografia
  • Abdelrahem, M., Rodríguez, J. and Kennel R. (2020). Improved Direct Model Predictive Control for Grid-Connected Power Converters. Energies, 13, p. 2597.
  • Adamczyk, M. and Orlowska-Kowalska, T. (2019). Virtual Current Sensor in the Fault-Tolerant Field- Oriented Control Structure of an Induction Motor Drive. Sensors, 19, p. 4979.
  • Bahri, I., Naouar, M., Slama-Belkhodja, I. and Monmasson, E. (9-12.09.2007). FPGA-based FDI of faulty current sensor in current controlled PWM converters. In: The International Conference on “Computer as a Tool”. Warszawa: EUROCON.
  • Berriri, H., Naouar, M. W. and Slama-Belkhodja, I. (2012). Easy and Fast Sensor Fault Detection and Isolation Algorithm for Electrical Drives. IEEE Trans. on Power Electronics, 27(2), pp. 490–499.
  • Betta, G. and Pietrosanto, A. (2000). Instrument Fault Detection and Isolation: State of the Art and New Research Trends. IEEE Transactions on Instrumentation and Measurement. 49(1), pp. 100–107.
  • Blanke, M., Kinnaert, M. and Lunze, J. (2003). Diagnosis and Fault-Tolerant Control: Springer-Verlag.
  • Choi, J. and Lee, S. J. (2020). A Sensor Fault-Tolerant Accident Diagnosis System. Sensors, 20, p. 5839.
  • Dybkowski, M. and Klimkowski, K. (25-30.09.2016). Stator current sensor fault detection and isolation for vector controlled induction motor drive. In: 2016 IEEE International Power Electronics and Motion Control Conference (PEMC). Varna, Bulgaria: IEEE, pp. 1097-–1102.
  • Fuchs, F. W. (2003). Some diagnosis methods for voltage source inverters in variable speed drives with induction machines-a survey. IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No. 03CH37468). Vol. 2. IEEE.
  • Gaeid, K. S. and Ping, H. W. (2011). Fault Tolerant Control of Induction Motor. Modern Applied Science, 5(4), pp. 83–94.
  • Isermann, R. (2006). Fault Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance. New York: Springer.
  • Jankowska, K. and Dybkowski, M. (2021). A Current Sensor Fault Tolerant Control Strategy for PMSM Drive Systems Based on Cri Markers. Energies, 14(12), art. 3443, pp. 1–18.
  • Jankowska, K. and Dybkowski, K. (2022). Experimental Analysis of the Current Sensor Fault Detection Mechanism Based on Cri Markers in the PMSM Drive System. Applied Sciences, 12(9), art. 9405, pp. 1–18.
  • Jiang, L. (2011). Sensor Fault Detection and Isolation using System Dynamics Identification Techniques. PhD thesis. The University of Michigan.
  • Jiang, J. and Xiang, Y. (2012). Fault-Tolerant Control Systems: A Comparative Study Between Active and Passive Approaches. Annual Reviews in Control, 36(1), pp. 60–72.
  • Jung, J.-H., Ku, H.-K., Son, Y.-D. and Kim, J.-M. (2019). Open-Switch Fault Diagnosis Algorithm and Tolerant Control Method of the Three-Phase Three-Level NPC Active Rectifier. Energies, 12, p. 2495.
  • Kaźmierowski, M. P. and Tunia, H. (1994). Automatic Control of Converter-Fed Driver. Warsaw, Amsterdam, New York, Tokyo: PWN-Elsevier Science Publishers.
  • Knapczyk, M. and Pienkowski, K. (2010). Sliding-Mode Virtual Flux-Oriented Control of PWM Rectifier with DC-Bus Voltage and Current Sensors. Variations, 4(6), p. 7.
  • Kowalski, C. T., Wierzbicki, R., Wolkiewicz M. (2013). Stator and Rotor Faults Monitoring of the Inverter-Fed Induction Motor Drive using State Estimators, Automatika, Vol 54, No 3.
  • Lee, K. S. and Ryu, J. S. (2003). Instrument Fault Detection and Compensation Scheme for Direct Torque Controlled Induction Motor Drivers. IEE Proceedings-Control Theory and Applications, 150(4), pp. 376–382.
  • Patan, K., Patan, M. and Klimkowicz, K. (2020). Sensor Fault-Tolerant Control Design for Magnetic Brake System. Sensors, 20, p. 4598.
  • Patel, A. and Ferdowsi, M. (2009). Current Sensing for Auto-motive Electronics—A Survey. IEEE Transactions on Vehicular Technology, 58(8), pp. 4108–4119.
  • Shicai, F. and Jianxiao, Z. (2-5.06.2012). Sensor fault detection and fault tolerant control of induction motor drivers for electric vehicles. In: IEEE 7th Int. Power Electronics and Motion Control Conference—ECCE Asia. China, pp. 1306–1309.
  • Tallam, R. M., Lee, S. B., Stone, G. C., Kliman, G. B., Yoo, J. Y., Habetler, T. G. and Harley, R. G. (2007). A Survey of Methods for Detection of Stator Related Faults in Induction Machines. IEEE Transactions on Industry Applications, 43(4), pp. 920–933.
  • Tsai, M.-F., Tseng, C.-S. and Lin, B.-Y. (2020). Phase Voltage-Oriented Control of a PMSG Wind Generator for Unity Power Factor Correction. Energies, 13, p. 5693.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14401e5a-71be-4a5b-8322-795d2637a8dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.