PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Termograwimetryczna analiza żywności - przegląd zastosowań

Autorzy
Identyfikatory
Warianty tytułu
EN
Thermogravimetric analysis of food - a review of applications
Języki publikacji
PL
Abstrakty
PL
Artykuł przedstawia krótki przegląd literatury dotyczącej zastosowań analizy termograwimetrycznej (TGA) w badaniu żywności. Opisano także zasadę pomiaru, wykorzystywaną aparaturę, sposób prezentacji wyników otrzymanych w tej metodzie.
EN
The article presents a short review of the literature on thermogravimetric analysis (TGA) applications in food testing. The principle of measurement, the devices used and the presentation of the results obtained in this method are also described.
Rocznik
Tom
Strony
37--41
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
  • Katedra Chłodnictwa i Koncentratów Spożywczych, Wydział Technologii Żywności, Uniwersytet Rolniczy w Krakowie
Bibliografia
  • 1. Duval C.: Inorganic Thermogravimetric Analysis. Elsevier, Amsterdam 1963.
  • 2. Brown M.E.: Introduction to thermal analysis: techniques and applications. Springer Science & Business Media, 2006, 268.
  • 3. Keattch C.J., Dollimore D.: Introduction to Thermogravimetry. Heyden, London 1975.
  • 4. Wendlandt W.W.: Thermal analysis techniques – Part I. Thermobalances. „J Chem Educ.”, 1972, 49 (10), A571.
  • 5. Wendlandt W.W.: The thermal properties of inorganic compounds: I. Some mercury(I) and (II) compounds. „Thermochim Acta”, 1974, 10 (1), 101-7.
  • 6. Kokta B., Valade J., Lepoutre P.: Thermal behavior of cellulosic graft copolymers. Characterization of cellulosic graft copolymers and cellulosic polymer blends by thermogravimetric analysis in comparison with infrared spectroscopy. „Tappi.”, 1972, 55 (3), 370.
  • 7. Filip D., Simionescu C.I., Macocinschi D.: Thermogravimetric analysis of liquid crystal-polymer blends. „Thermochim Acta”, 2003, 395 (1-2), 217-23.
  • 8. Zhang W., Henschel T., Soderlind U. et al.: Thermogravimetric and online gas analysis on various biomass fuels. [In:] 8th International Conference on Applied Energy, 2016. Elsevier Science Bv, Amsterdam 2017, 162-7.
  • 9. Islamova S.I., Khamatgalimov A.R.: Thermogravimetric and kinetic analyses of the thermal decomposition of fuel wood. „Solid Fuel Chem”, 2017, 51 (2), 83-7.
  • 10. Stratakis G.A., Stamatelos A.M.: Thermogravimetric analysis of soot emitted by a modern diesel engine run on catalyst-doped fuel. „Combust Flame”, 2003, 132 (1-2), 157-69.
  • 11. Niu S.L., Lu C.M., Han K.H., Zhao J.L.: Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere. „J Therm Anal Calorim.”, 2009, 98 (1), 267-74.
  • 12. Wroblewski R., Ceran B.: Thermogravimetric analysis in the study of solid fuels. [In:] 1st International Conference on the Sustainable Energy and Environment Development, 2016. Cedex A: E D P Sciences, 2016, UNSP 00109.
  • 13. Yoruk C.R., Meriste T., Sener S. et al.: Thermogravimetric analysis and process simulation of oxy-fuel combustion of blended fuels including oil shale, semicoke, and biomass. „Int J Energy Res.”, 2018, 42 (6), 2213-24.
  • 14. Haines P.J.: Principles of Thermal Analysis and Calorimetry. 2002.
  • 15. Analizatory termograwimetryczne (TGA), LECO Poland: https://pl.leco-europe.com/tga, available from: https://pl.leco-europe.com/tga.
  • 16. TGA – analizator termograwimetryczny, METTLER TOLEDO. Available from: www.mt.com/pl/pl/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TGA.html.
  • 17. Materazzi S.: Thermogravimetry infrared spectroscopy (TG-FTIR) coupled analysis. „Appl Spectrosc Rev.”, 1997, 32 (4), 385-404.
  • 18. Materazzi S.: Mass spectrometry coupled to thermogravimetry (TG-MS) for evolved gas characterization: a review. „Appl Spectrosc Rev.”, 1998, 33 (3), 189-218.
  • 19. Schiraldi A., Fessas D.: Classical and Knudsen thermogravimetry to check states and displacements of water in food systems. „J Therm Anal Calorim.”, 2003, 71 (1), 225-35.
  • 20. Fessas D., Schiraldi A.: Water properties in wheat flour dough I: classical thermogravimetry approach. „Food Chem.”, 2001, 72 (2), 237-44.
  • 21. Fessas D., Schiraldi A.: Water properties in wheat flour dough II: classical and knudsen thermogravimetry approach. „Food Chem.”, 2005, 90 (1-2), 61-8.
  • 22. Orlowska M., Utzig E., Randzio S.L.: Thermogravimetric study ofwater state inwheat starch gels obtained under high pressures. [In:] Bartlett D.H.: High-pressure bioscience and biotechnology. Oxford, Blackwell Publishing, 2010, 55-61.
  • 23. Vuataz G., Meunier V., Andrieux J.C.: TG-DTA approach for designing reference methods for moisture content determination infood powders. „Food Chem.”, 2010, 122 (2), 436-42.
  • 24. Joardder M.U.H., Karim A., Kumar C., Brown R.J.: Determination of effective moisture diffusivity of banana using Thermogravimetric analysis. [In:]: 10th International Conference onMechanical Engineering, 2013. Elsevier Science Bv, Amsterdam, 2014, 538-43.
  • 25. Materazzi S., Curtis S.D., Sagone F. et al.: Thermal analysis and food quality – the possibility to qualify the pasta processing. „J Therm Anal Calorim.”, 2005, 80 (2), 465-7.
  • 26. Materazzi S., Curtis S.D.A., Ciprioti S.V. et al.: Thermogravimetric characterization of dark chocolate. „J Therm Anal Calorim.”, 2014, 116 (1), 93-8.
  • 27. Ostrowska-Ligeza E., Gorska A., Wirkowska-Wojdyla M. et al.: Thermogravimetric characterization of dark and milk chocolates at different processing stages. „J Therm Anal Calorim.”, 2018, 134 (1), 623-31.
  • 28. Wang D., Ma Y., Zhang C., Zhao X.: Thermal characterization of the anthocyanins from black soybean (Glycine max L.) exposed to thermogravimetry. „Lwt-Food Sci Technol.”, 2014, 55 (2), 645-9.
  • 29. Marcolino V.A., Zanin G.M., Durrant L.R. et al.: Interaction of Curcumin and Bixin with beta-Cyclodextrin: Complexation Methods, Stability, and Applications in Food. „J Agric Food Chem.”, 2011, 59 (7), 3348-57.
  • 30. Dollimore D., O’Connell C.: A comparison of the thermal decomposition of preservatives, using thermogravimetry and rising temperature kinetics. „Thermochim Acta”, 1998, 324 (1-2), 33-48.
  • 31. Conceicao M.M., Fernandes V.J., Souza A.G. et al.: Study of thermal degradation of aspartame and its products of conversion in sweetener using isothermal thermogravimetry and HPLC. „Thermochim Acta”, 2005, 433 (1-2), 163-9.
  • 32. Simon P., Polavka J.: Thermooxidative degradation of dried milk studied by non-isothermal thermogravimetry. „J Food Nutr Res.”, 2006, 45 (4), 166-70.
  • 33. Tupa M., Maldonado L., Vazquez A., Foresti M.L.: Simple organocatalytic route for the synthesis of starch esters. „Carbohydr Polym.”, 2013, 98 (1), 349-57.
  • 34. Soares R.M.D., Scremin F.F., Soldi V.: Thermal stability of biodegradable films based on soy protein and corn starch. „Macromol Symp.”, 2005, 229, 258-65.
  • 35. Santos J.C.O., dos Santos I.M.G., de Souza A.G. et al.: Thermal stability and kinetic study on thermal decomposition of commercial edible oils by thermogravimetry. „J Food Sci.”, 2002, 67 (4), 1393-8.
  • 36. Vecchio S., Cerretani L., Bendini A., Chiavaro E.: Thermal Decomposition Study of Monovarietal Extra Virgin Olive Oil by Simultaneous Thermogravimetry/Differential Scanning Calorimetry: Relation with Chemical Composition. „J Agric Food Chem.”, 2009, 57 (11), 4793-800.
  • 37. Volli V., Purkait M.K.: Physico-chemical properties and thermal degradation studies of commercial oils in nitrogen atmosphere. „Fuel”, 2014, 117, 1010-9.
  • 38. Van Aardt M., Duncan S.E., Long T.E. et al.: Effect of antioxidants onoxidative stability of edible fats and oils: Thermogravimetric analysis. „J Agric Food Chem.”, 2004, 52 (3), 587-91.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-143fa978-0063-48af-bfce-cc00f4be6c23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.