Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In order to completely eliminate, or greatly reduce the number of phase wraps in 2D wrapped phase map, Gdeisat and co-workers proposed an algorithm, which uses shifting the spectrum towards the origin. But the spectrum can be shifted only by an integer number, meaning that the phase wraps reduction is often not optimal. In addition, Gdeisat’s method will take much time to make the Fourier transform, inverse Fourier transform, select and shift the spectral components. In view of the above problems, we proposed an improved method for phase wraps elimination or reduction. First, the wrapped phase map is padded with zeros, the carrier frequency of the projected fringe is determined by high resolution, which can be used as the moving distance of the spectrum. And then realize frequency shift in spatial domain. So it not only can enable the spectrum to be shifted by a rational number when the carrier frequency is not an integer number, but also reduce the execution time. Finally, the experimental results demonstrated that the proposed method is feasible.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
295--306
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- School of Physics, Shandong University, Jinan 250100, China
autor
- School of Physics, Shandong University, Jinan 250100, China
autor
- School of Physics, Shandong University, Jinan 250100, China
autor
- School of Physics, Shandong University, Jinan 250100, China
autor
- School of Physics, Shandong University, Jinan 250100, China
autor
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
autor
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
Bibliografia
- [1] ZHENKUN LEI, CHUNLI WANG, CANLIN ZHOU, Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation, Optics and Lasers in Engineering 66, 2015, pp. 249–257.
- [2] YANG FU-JUN, GENG MIN, DAI MEI-LING, HE XIAO-YUA, 3D shape measurement of discontinuous objects based on single frequency fringe projection in 4-step phase shifting profilemetry, Journal of Optoelectronics. Laser 8, 2012, article ID 022.
- [3] TONGCHUAN LIU, CANLIN ZHOU, SHUCHUN SI, HUI LI, ZHENKUN LEI, Improved differential 3D shape retrieval, Optics and Lasers in Engineering 73, 2015, pp. 143–149.
- [4] GUANGLIANG DU, CHAORUI ZHANG, CANLIN ZHOU, SHUCHUN SI, YANJIE LI, Iterative two-step temporal phase-unwrapping applied to high sensitivity three-dimensional profilometry, Optics and Lasers in Engineering 79, 2016, pp. 22–28.
- [5] CANLIN ZHOU, TONGCHUAN LIU, SHUCHUN SI, JIANQIANG XU, ZHENKUN LEI, An improved stair phase encoding method for absolute phase retrieval, Optics and Lasers in Engineering 66, 2015, pp. 269–278.
- [6] QUAN C., CHEN W., TAY C.J., Phase-retrieval techniques in fringe-projection profilometry, Optics and Lasers in Engineering 48(2), 2010, pp. 235–243.
- [7] VAN DER JEUGHT S., SIJBERS J., DIRCKX J.J.J., Fast Fourier-based phase unwrapping on the graphics processing unit in real-time imaging applications, Journal of Imaging 1(1), 2015, pp. 31–44.
- [8] RIVERA M., HERNANDEZ-LOPEZ F.J., GONZALEZ A., Phase unwrapping by accumulation of residual maps, Optics and Lasers in Engineering 64, 2015, pp. 51–58.
- [9] FANG YANG, ZHAOMIN WANG, YONGFU WEN, WEIJUAN QU, Two-dimensional phase unwrapping algorithms for fringe pattern analysis: a comparison study, Proceedings of SPIE 9302, 2014, article ID 93023F.
- [10] GOLDSTEIN R.M., ZEBKER H.A., WERNER C.L., Satellite radar interferometry: two-dimensional phase unwrapping, Radio Science 23(4), 1988, pp. 713–720.
- [11] MING ZHAO, LEI HUANG, QICAN ZHANG, XIANYU SU, ANAND ASUNDI, QIAN KEMAO, Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies, Applied Optics 50(33), 2011, pp. 6214–6224.
- [12] MING-HSING SHEN, CHI-HUNG HWANG, WEI-CHUNG WANG, Using higher steps phase-shifting algorithms and linear least-squares fitting in white-light scanning interferometry, Optics and Lasers in Engineering 66, 2015, pp. 165–173.
- [13] WEI HE, LING XIA, FENG LIU, Sparse-representation-based direct minimum Lp-norm algorithm for MRI phase unwrapping, Computational and Mathematical Methods in Medicine 2014, 2014, article ID 134058.
- [14] SALDNER H.O., HUNTLEY J.M., Temporal phase unwrapping: application to surface profiling of discontinuous objects, Applied Optics 36(13), 1997, pp. 2770–2775.
- [15] QUDEISAT M., GDEISAT M., BURTON D., LILLEY F., A simple method for phase wraps elimination or reduction in spatial fringe patterns, Optics Communications 284(21), 2011, pp. 5105–5109.
- [16] PEIRONG JIA, KOFMAN J., ENGLISH C., DESLAURIERS A., Comparison of linear and non-linear calibration methods for phase-shifting surface-geometry measurement, Proceedings of SPIE 6051, 2005, article ID 60510G.
- [17] XIANG PENG, ZHAOLIANG YANG, HANBEN NIU, Multi-resolution reconstruction of 3-D image with modified temporal unwrapping algorithm, Optics Communications 224(1–3), 2003, pp. 35–44.
- [18] BRACEWELL R.N., The Fourier Transform and its Applications, Stanford University, 2005.
- [19] QI FAN, HONGRU YANG, GAOPING LI, JIANLIN ZHAO, Suppressing carrier removal error in the Fourier transform method for interferogram analysis, Journal of Optics 12(11), 2010, article ID 115401.
- [20] YONGZHAO DU, GUOYING FENG, HONGRU LI, SHOUHUAN ZHOU, Accurate carrier-removal technique based on zero padding in Fourier transform method for carrier interferogram analysis, Optik – International Journal for Light and Electron Optics 125(3), 2014, pp. 1056–1061.
- [21] SMITH J.O., Mathematics of the Discrete Fourier Transform (DFT), CCRMA, Stanford, 2002.
- [22] HERRÁEZ M.A., BURTON D.R., LALOR M.J., GDEISAT M.A., Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path, Applied Optics 41(35), 2002, pp. 7437–7444.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-143a5851-07f9-4a59-b604-726e4939b728