Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present research article deals with the study of a boundary value problem of a one-dimensional semi-infinite hygro-thermoelastic rod of length l. The deformation of the rod is under consideration when the left boundary of the hygro-thermoelastic rod is subjected to a sudden heat source. The solutions of the considered variables are decomposed in terms of normal modes. Analytical expressions of displacement, moisture concentration, temperature field, and stresses are obtained and presented graphically for different periods. By studying the one-dimensional thermal shock problem for a semi-infinite hygrothermoelastic rod, the authors aim to gain insights into the fundamental behavior of materials subjected to rapid temperature changes and moisture effects.
Rocznik
Tom
Strony
1--12
Opis fizyczny
Bibliogr. 43 poz., tab., wykr.
Twórcy
autor
- Department of Mathematics, University Institute of Sciences, Chandigarh University, Gharuan-Mohali, Punjab, INDIA
autor
- Department of Computer Science and Engineering, Chandigarh University, Gharuan-Mohali, Punjab, INDIA
Bibliografia
- [1] Chandrasekharaiah D.S. and Srinath K.S. (1998): Thermoelastic interactions without energy dissipation due to a point heat source.– Journal of Elasticity, vol.50, No.2, pp.97-108.
- [2] Sharma J.N., Chauhan R.S., and Kumar R. (2000): Time-harmonic sources in a generalized thermoelastic continuum.– Journal of Thermal Stresses, vol.23, No.7, pp.657-674.
- [3] Baksi A., Bera R.K., and Debnath L. (2005): A study of magnetothermoelastic problems with thermal relaxation and heat sources in a three-dimensional infinite rotating elastic medium.– International Journal of Engineering Science, vol.43, No.19-20, pp.1419-1434.
- [4] Mallik S.H. and Kanoria M. (2007): Generalized thermoelastic functionally graded solid with a periodically varying heat source.– International Journal of Solids and Structures, vol.44, No.22-23, pp.7633-7645.
- [5] He T. and Cao L. (2009): A problem of generalized magneto-thermoelastic thin slim strip subjected to a moving heat source.– Mathematical and Computer Modelling, vol.49, No.7-8, pp.1710-1720.
- [6] Tripathi J.J., Kedar G.D. and Deshmukh K.C. (2014): Dynamic problem of generalized thermoelasticity for a semi- infinite cylinder with heat sources.– Journal of Thermoelasticity, vol.2, No.1, pp.1-8.
- [7] Xia R., Tian X. and Shen Y. (2014): Dynamic response of two-dimensional generalized thermoelastic coupling problem subjected to a moving heat source.– Acta Mechanica Solida Sinica, vol.27, No.3, pp.300-305.
- [8] Ailawalia P. and Budhiraja S. (2015): Disturbance in thermo-microstretch elastic medium with internal heat source.– Mechanics of Advanced Materials and Structures, vol.22, No.9, pp.776-783.
- [9] Abbas I.A. (2015): Eigenvalue approach to fractional order generalized magneto-thermoelastic medium subjected to moving heat source.– Journal of Magnetism and Magnetic Materials, vol.377, pp.452-459.
- [10] Ailawalia P. and Sachdeva S. (2018): Internal heat source in a temperature dependent thermoelastic half space with microtemperatures.– Journal of Computational Applied Mechanics, vol.49, No.2, pp.351-358.
- [11] Sarkar N. and Mondal S. (2019): Thermoelastic interactions in a slim strip due to a moving heat source under dual- phase-lag heat transfer.– Journal of Heat Transfer, vol.141, No.12. 124501, https://doi.org/10.1115/1.4044920.
- [12] Sarkar N. and Mondal S. (2019): Transient responses in a two temperature thermoelastic infinite medium having cylindrical cavity due to moving heat source with memory dependent derivative.– ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift fr Angewandte Mathematik und Mechanik, vol.99, No.6, pp. 201800343, https://doi.org/10.1002/zamm.201800343.
- [13] Mondal S., Sur A., Bhattacharya D. and Kanoria M. (2020): Thermoelastic interaction in a magneto-thermoelastic rod with memory-dependent derivative due to the presence of moving heat source.– Indian Journal of Physics, vol.94, pp.1591-1602.
- [14] Kaur I. and Lata P. (2019): Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source.– International Journal of Mechanical and Materials Engineering, vol.14, Article No.10, pp.13.
- [15] Marin M. (1996): Generalized solutions in elasticity of micropolar bodies with voids.– Revista de la Academia Canaria de Ciencias, vol.8, No.1, pp.101-106.
- [16] Marin M. (1997): An uniqueness result for body with voids in linear thermoelasticity.– Rendiconti di Matematica Applicata, Roma, vol.17, No.1, pp.103-113.
- [17] Sih G.C., Michopoulos J.G and Chou S.C. (1986) Hygrothermoelasticity.– Dordrecht, The Netherlands: Martinus Nijhoff Publishing.
- [18] Weitsman Y. (1987): Stress-assisted diffusion in elastic and viscoelastic materials.– Journal of the Mechanics and Physics of Solids, vol.35, No.1, pp.73-93.
- [19] Basi S., Rogers T.G. and Spencer A.J.M. (1991): Hygrothermoelastic analysis of anisotropic inhomogeneous and laminated plates.– Journal of the Mechanics and Physics of Solids, vol.39, No.1, pp.1-22, https://doi.org/10.1016/00225096(91)90028-M.
- [20] Advani S.H., Lee T.S., Lee J.K. and Kim C.S. (1993): Hygrothermomechanical evaluation of porous media under finite deformation. Part Infinite element formulations.– International Journal for numerical methods in Engineering, vol.36, No.1, pp.147-160, https://doi.org/10.1002/nme.1620360109.
- [21] Aboudi J. and Williams T.O. (2000): Coupled micro-macromechanical analysis of hygrothermoelastic composites, International Journal of Solids and Structures, vol.37, pp.4149-4179, https://doi.org/10.1016/S0020- 7683(99)00145-6.
- [22] Altay G.A. and Dokmeci M.C. (2000): Some Hamiltonian-type variational principles for motions of a hygrothermoelastic medium. Journal of Thermal Stresses, vol.23, No.3, pp.273-284. https://doi.org/10.1080/014957300280443.
- [23] Rao V.V.S. and. Sinha P.K. (2004): Dynamic response of multidirectional composites in hygrothermal environments.– Composite Structures, vol.64, pp.329-338, https://doi.org/10.1016/j.compstruct.2003.09.002.
- [24] Kundu C.K. and Han J.H. (2009): Vibration characteristics and snapping behavior of hygro-thermo-elastic composite doubly curved shells.– Composite Structures, vol.91, No.3, pp.306-317. https://doi.org/10.1016/j.compstruct.2009.05.009.
- [25] Chiba R. and Sugano Y. (2011): Transient hygrothermoelastic analysis of layered plates with one-dimensional temperature and moisture variations through the thickness.– Composite Structures, vol.93, pp.2260-2268, https://doi.org/10.1016/j.compstruct.2011.03.014.
- [26] Alsubari S., Ali J.M., and Aminanda Y. (2015): Hygrothermoelastic analysis of anisotropic cylindrical shells.– Composite Structures, vol.131, pp.151-159, https://doi.org/10.1016/j.compstruct.2015.04.035.
- [27] Mohamed Ali J.S., Alsubari S. and Aminanda Y. (2016): Hygrothermoelastic analysis of orthotropic cylindrical shells.– Latin American Journal of Solids and Structures, vol.13, No.3, pp.573-589, http://dx.doi.org/10.1590/1679- 78252249.
- [28] Hosseini S.M. and Ghadiri Rad M.H. (2017): Application of meshless local integral equations for two-dimensional transient coupled hygrothermoelasticity analysis: Moisture and thermoelastic wave propagations under shock loading.– Journal of Thermal Stresses, vol.40, No.1, p.4054, https://doi.org/10.1080/01495739.2016.1224134.
- [29] Zhao M., Dang H., Fan C. and Chen Z. (2018): Three-dimensional steady-state general solution for isotropic hygrothermoelastic media.– Journal of Thermal Stresses, vol.41, No.8, 951-972, https://doi.org/10.1080/01495739.2018.1449040.
- [30] Zhang X.Y., Peng Y. and Li X.F. (2018): Time-fractional hygrothermoelastic problem for a sphere subjected to heat and moisture flux.– Journal of Heat Transfer, vol.140, No.12, pp.122002, https://doi.org/10.1115/1.4041419.
- [31] Lamba N.K. and Deshmukh K.C. (2019): Hygrothermoelastic response of a finite solid circular cylinder.– Multidiscipline Modeling in Materials and Structures, vol.16, No.1, pp.37-52, https://doi.org/10.1108/MMMS-12- 2018-0207.
- [32] Bhoyar S., Varghese V. and Khalsa L. (2020): Hygrothermoelastic response in the bending analysis of elliptic plate due to hygrothermal loading.– Journal of Thermal Stresses, vol.43, No.3, pp.372-400, https://doi.org/10.1080/01495739.2019.1711477.
- [33] Ailawalia P., Gupta D. and Sharma V. (2022): Surface waves in hygrothermoelastic half-space with hydrostatic initial stress.– Mechanics of Advanced Materials and Structures, vol.29, No.16, pp.2380-2389, https://doi.org/10.1080/15376494.2020.1862942.
- [34] Yadav A.K., Carrera E., Marin M and Othman M.I.A. (2022): Reflection of hygrothermal waves in a nonlocal theory of coupled thermoelasticity.– Mechanics of Advanced Materials and Structures. (In press). https://doi.org/10.1080/15376494.2022.2130484.
- [35] Abbas I.A. (2007): Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity.– Forsch Ingenieurwes, vol.71, pp.215-222, doi:10.1007/s10010-007-0060-x.
- [36] Zenkour A.M. and Abbas I.A. (2014): Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model.– International Journal of Structural Stability and Dynamics, vol.14, No.7, p.1450025, doi:10.1142/S0219455414500254.
- [37] Abbas I.A and Kumar R. (2016): 2D deformation in initially stressed thermoelastic half-space with voids.– Steel and Composite Structures, vol.20, pp.1103-1117, doi:10.12989/scs.2016.20.5.1103.
- [38] Hobiny A. and Abbas I.A. (2019): A GN model on photothermal interactions in a two-dimensions semiconductor half space.– Results in Physics, vol.15, 102588.
- [39] Alzahrani F., Hobiny A., Abbas I.A and Marin M. (2020): An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities.– Symmetry, vol.12, No.5, 848, doi:10.3390/sym12050848.
- [40] Abbas I.A. and Marin M. (2020): Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity.– Journal of Taibah University for Science, vol.14, 1369-1376, doi:10.1080/16583655.2020.1824465.
- [41] Marin M., Hobiny A. and Abbas I.A. (2021): The effects of fractional time derivatives in porothermoelastic materials using finite element method.– Mathematics, vol.9, No.14, p.1606. doi:10.3390/math9141606.
- [42] Chang W.J. and Weng C.I. (2000): An analytical solution to coupled heat and moisture diffusion transfer in porous materials.– International Journal of Heat and Mass Transfer, vol.43, pp.3621-3632, https://doi.org/10.1016/S00179310(00)00003-X.
- [43] Yang Y.C., Chu S.S., Lee H.L. and Lin S.L. (2006): Hybrid numerical method applied to transient hygrothermal analysis in an annular cylinder.– International Communications in Heat and Mass Transfer, vol.33, pp.102-111, https://doi.org/10.1016/j.icheatmasstransfer.2005.08.007.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14398eea-51c6-45ee-a793-f209a30e6eca