Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Steel-making dust slurry (SS) and convertor dust slurry (CS) were tested for uptake of phosphates from aqueous solutions. The adsorption of phosphates on SS and CS corresponded well with both Langmuir and Freundlich adsorption isotherms, which indicated the combination of physical and chemical processes. The maximum adsorbed amount of phosphates on both dust slurry samples was ca. 11 mg P/g. The study evaluates also the effect of acidic leaching on the retention characteristics of both dust slurry samples. From the slurry samples prepared by acidic leaching, the leached convertor dust slurry (CSL) was the only sample capable to retain phosphates. To reveal the retention mechanisms of phosphates, the original and leached dust slurry samples were analyzed by IR and Raman spectroscopy. Co-precipitation of Ca and Fe phosphates, or surface complexation of phosphates were evaluated as the retention mechanisms of CS and CSL while the retention of phosphates by zincite in the case of SS is probably based on their adsorption.
Czasopismo
Rocznik
Tom
Strony
37--51
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Chemistry, VSB – Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
autor
- Department of Chemistry, VSB – Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
autor
- Department of Chemistry, VSB – Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
autor
- Department of Chemistry, VSB – Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
autor
- Department of Chemistry, VSB – Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
autor
- Institute of Geological Engineering, VŠB – Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
Bibliografia
- [1] BUSÉ R., MOMBELLI D., MAPELLI C., Metals recovery from furnaces dust. Waelz process, Metall. Ital., 2014, 106 (5), 19–27. DOI: hdl.handle.net/11311/924357.
- [2] ZHANG D., ZHANG X., YANG T., RAO S., HU W., LIU W., CHEN L., Selective leaching of zinc from blast furnace dust with mono-ligand and mixed-ligand complex leaching systems, Hydrometall., 2017, 169, 219–228. DOI: j.hydromet.2017.02.003.
- [3] LOẬ PEZ-DELGADO A., PEẬ REZ C., LOẬ PEZ F.A., Sorption of heavy metals on blast furnace sludge, Water Res., 1998, 32, 989–996. DOI: 10.1016/S0043-1354(97)00304-7.
- [4] RADJENOVIC A., MALINA J., STRKALJ A., Removal of Ni from aqueous solution by blast furnace sludge as an adsorbent, Desalin. Water Treat., 2010, 21, 286–294. DOI: 10.5004/dwt.2010.1580.
- [5] ROZUMOVÁ L., PREHRADNÁ J., Reducing the content of metal ions from mine water by using converter sludge, Water, 2018, 10 (1), 38. DOI: 10.3390/w10010038.
- [6] KLIKA Z., SEIDLEROVÁ J., VALÁŠKOVÁ M., KLIKOVÁ C., KOLOMAZNÍK I., Uptake of Ce(III) and Ce(IV) on montmorillonite, Appl. Clay Sci., 2016, 132–133, 41–49. DOI: 10.1016/j.clay.2016.05.012.
- [7] CARRILLO-PEDROZA F.R., DE JESÚS SORIA-AGUILAR M., MARTÍNEZ-LUEVANOS A., NARVAEZ-GARCÍA V., Blast furnace residues for arsenic removal from mining-contaminated groundwater, Environ. Technol., 2014, 2895–2902. DOI: 10.1080/09593330.2014.925509.
- [8] KOSTURA B., KULVEITOVÁ H., LEŠKO J., Blast furnace slags as sorbents of phosphate from water solutions, Water Res., 2005, 39, 1795–1802. DOI: 10.1016/j.watres.2005.03.010.
- [9] KOSTURA B., DVORSKÝ R., KUKUTSCHOVÁ J., ŠTUDENTOVÁ S., BEDNÁŘ J., MANČÍK P., Preparation of sorbent with a high active sorption surface based on blast furnace slag for phosphate removal from wastewater, Environ. Prot. Eng., 2017, 43, 161–168. DOI:10.5277/epe170113.
- [10] KOSTURA B., HUCZALA R., RITZ M., LEŠKO J., Retention of phosphates from aqueous solutions within sol-gel derived amorphous CaO–MgO–Al2O3–SiO2 system as a model of blast furnace slag, Chem. Pap., 2018, 72 (2), 401–408. DOI: 10.1007/s11696-017-0289-2.
- [11] KORKUSUZ E.A., BEKLIOĞLU M., DEMIRER G.N., Use of blast furnace granulated slag as a substrate in vertical flow reed beds. Field application, Bioresour. Technol., 2007, 98, 2089–2101. DOI: 10.1016/j.biortech.2006.08.027.
- [12] XIONG J.B., HE Z.L., MAHMOOD Q., LIU D., YANG X., ISLAM E., Phosphate removal from solution using steel slag through magnetic separation, J. Hazard. Mater., 2008, 152, 211–215. DOI: 10.1016/j.jhazmat.2007.06.103.
- [13] KOSTURA B., KULVEITOVÁ H., LEŠKO J., Determination of phosphorus forms after sorption on blast furnace sludge and slag, Hutnické listy, 2002, 6–8, 7–12 (in Czech).
- [14] XUE Y., HOU H., ZHU S., Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag, J. Hazard. Mater., 2009, 162, 973–980. DOI: 10.1016/j.jhazmat.2008.05.131.
- [15] ZENG L., LI X., LIU J., Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings, Water Res., 2004, 38, 1318–1326. DOI: 10.1016/j.watres.2003.12.009.
- [16] YANG J., WANG S., LU Z.B., YANG J., LOU S.J., Converter slag-coal cinder columns for the removal of phosphorous and other pollutants, J. Hazard. Mater., 2009, 168, 331–337. DOI: 10.1016/j.jhazmat.2009.02.024.
- [17] BIAO W., YUPEN Y., YUANZHI T., YUGE B., FAN L., WENFENG T., QIAOYUN H., XIONGHAN F., Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles, Chemosphere, 2017, 176, 255–265. DOI: 10.1016/j.chemosphere.2017.02.134.
- [18] MICHELMORE A., JENKINS P., RALSTON J., The interaction of linear polyphosphates with zincite surfaces, Int. J. Miner. Process., 2003, 68, 1–16. DOI: 10.1016/S0301-7516(01)00085-0.
- [19] MAITZ M.F., PHAM M.T., MATZ W., REUTHER H., STEINER G., Promoted calcium-phosphate precipitation from solution on titanium for improved biocompatibility by ion implantation, Surf. Coat. Techn., 2002, 158–159, 151–156. DOI: 10.1016/S0257-8972(02)00189-5.
- [20] KHAN I., SUNAKAWA K., HIGASHINAKA R., MATSUDA T.D., AOKI Y., NOMURA K., KUZMANN E., HOMONNAY Z., SINKÓ K., NAKA T., NAKANE T., KREHULA S., MUSUĆ S., KUBUKI S., Structural characterization and magnetic properties of iron-phosphate glass prepared by sol-gel method, J. Non-Cryst. Solids, 2020, 543, 120158. DOI: 10.1016/j.jnoncrysol.2020.120158.
- [21] ZAGHIB K., JULIEN C.M., Structure and electrochemistry of FePO4·2H2O hydrate, J. Power Sources, 2005, 142, 279–284. DOI: 10.1016/j.jpowsour.2004.09.042.
- [22] JUBB A.M., ALLEN H.C., Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition, ACS Appl. Mater. Interf., 2010, 2, 2804–2812. DOI: 10.1021/am1004943.
- [23] RUAN H.D., FROST R.L., KLOPROGGE J.T., The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite, Spectrochim. Acta Part A, 2001, 57, 2575–2586. DOI: 10.1016/S1386-1425(01)00445-0.
- [24] ARAI Y., SPARKS D.L., ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface, J. Colloid Interface Sci., 2001, 241, 317–326. DOI: 10.1006/jcis.2001.7773.
- [25] HUANG X., Intersection of isotherms for phosphate adsorption on hematite, J. Colloid Interface Sci., 2004, 271, 296–307. DOI: 10.1016/j.jcis.2003.12.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-14372d01-65fe-401a-9385-7795030e4187