Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study provides a simple and effective decision-making method to choose the best phase-change material for different energy storage applications. Three case studies are provided to demonstrate the proposed decision-making method. The first case study addresses the problem of best phase-change material selection for a domestic water heating latent heat storage system by considering 15 different phase-change materials and 8 selection attributes; the second case study addresses the problem of selecting the best phase-change material for a triple tube heat exchanger unit by considering 12 different phasechange materials and 5 selection attributes; the third case study addresses the problem of best phase-change material selection for latent heat thermal energy storage within the walls of Trombe to enhance performance considering 11 phase-change materials and 4 selection attributes. The results of the proposed decision-making method are compared with those of other well-known multi-attribute decision-making methods. The proposed method is shown to be simple to implement, providing a logical way for allocating weights to the selection attributes and adaptable to phase-change material selection problems in different energy storage contexts.
Czasopismo
Rocznik
Tom
Strony
67--79
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395007, India
Bibliografia
- [1] Rastogi, M., Chauhan, A., Vaish, R., & Kishan, A. (2015). Selection and performance assessment of phase change materials for heating, ventilation and air-conditioning applications. Energy Conversion and Management, 89, 260–269. doi: 10.1016/j.enconman.2014.09.077
- [2] Loganathan, A., & Mani, I. (2018). A fuzzy based hybrid multi criteria decision making methodology for phase change material selection in electronics cooling system. Ain Shams Engineering Journal, 9, 2943–2950. doi: 10.1016/j.asej.2017.11.005
- [3] Yang, K., Zhu, N., Chang, C., Wang, D., Yang, S., & Ma, S. (2018). A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): a case study. Energy, 165, 1085−1096. doi: 10.1016/j.energy.2018.10.022
- [4] Amer, A.E., Rahmani, K., & Lebedev, V.A. (2020). Using the analytic hierarchy process (AHP) method for selection of phase change materials for solar energy storage applications. Journal of Physics: Conference Series, 1614, 12022. doi: 10.1088/1742-6596/1614/1/012022
- [5] Oluah, C., Akinlabi, E.T., & Njoku, H.O. (2020). Selection of phase change material for improved performance of Trombe wall systems using the entropy weight and TOPSIS methodology. Energy and Buildings, 217, 109967. doi: 10.1016/j.enbuild.2020.109967
- [6] Maghsoodi, A.I., Soudian, S., Martínez, L., Herrera-Viedma, E., & Zavadskas, E.K. (2020). A phase change material selection using the interval-valued target-based BWM-CoCoMULTIMOORA approach: A case-study on interior building applications. Applied Soft Computing, 95, 106508. doi: 10.1016/j.asoc.2020.106508
- [7] Anilkumar, B.C., Maniyeri, R., & Anish, S. (2021). Optimum selection of phase change material for solar box cooker integrated with thermal energy storage unit using multicriteria decisionmaking technique. Journal of Energy Storage, 40, 102807. doi:10.1016/j.est.2021.102807
- [8] Das, D., Sharma, R.K., Saikia, P., & Rakshit, D. (2021). An integrated entropy-based multiattribute decision-making model for phase change material selection and passive thermal management. Decision Analytics Journal, 1, 100011. doi: 10.1016/j.dajour.2021.100011
- [9] Kumar, A., Kothari, R., Sahu, S.K., & Kundalwal, S.I. (2021). Selection of phase-change material for thermal management of electronic devices using multi-attribute decision making technique. International Journal of Energy Research, 45, 2023–2042.doi: 10.1002/er.5896
- [10] Mukhamet, T., Kobeyev, S., Nadeem, A., & Memon, S.A. (2021). Ranking PCMs for building façade applications using multi-criteria decision-making tools combined with energy simulations. Energy, 215, 119102. doi: 10.1016/j.energy.2020.119102
- [11] Nicolalde, J.F., Cabrera, M., Martínez-Gomez, J., Salazar, R.B., & Reyes, E. (2022). Selection of a phase change material for energy storage by multi-criteria decision method regarding the thermal comfort in a vehicle. Journal of Energy Storage, 51, 104437.doi: 10.1016/j.est.2022.104437
- [12] Pradeep, N., & Reddy, K.S. (2022). Development of an effective algorithm for selection of PCM based filler material for thermocline thermal energy storage system. Solar Energy, 236, 666–686. doi: 10.1016/j.solener.2022.02.044
- [13] Akgün, H., Yapıcı, E., Özkan, A., Günkaya, Z., & Banar, M. (2023). A combined multi-criteria decision-making approach for the selection of carbon-based nanomaterials in phase change materials. Journal of Energy Storage, 60, 106619. doi: 10.1016/j.est.2023.106619
- [14] Awan, B., Ma, Z., Lin, W., Pandey, A.K., & Tyagi, V.V. (2023). A characteristic-oriented strategy for ranking and near-optimal selection of phase change materials for thermal energy storage in building applications. Journal of Energy Storage, 57, 106301.doi: 10.1016/j.est.2023.106619
- [15] Yang, K., Liu, B., Du, N., Liu, J., He, Y., Li, Y., Li, Y., & Zhao, Q. (2023). Effects of thermophysical properties on optimal selection of phase change material for a triple tube heat exchanger unit at different time scales. Journal of Energy Storage, 61, 106822.doi: 10.1016/j.est.2023.106822
- [16] Gadhave, P., Prabhune, C., & Pathan, F. (2023). Selection of phase change material for domestic water heating using multi criteria decision approach. Australian Journal of Mechanical Engineering, 21, 295–315. doi: 10.1080/14484846.2020.1842297
- [17] Saaty, T.L. (2007). On the invalidity of fuzzifying numerical judgments in the analytic hierarchy process. Mathematical and Computational Modelling, 46, 962−975. doi: 10.1016/j.mcm.2007.03.022
- [18] Oró, E., Barreneche, C., Farid, M.M., & Cabeza, L.F. (2013). Experimental study on the selection of phase change materials for low temperature applications. Renewable Energy, 57, 130−136.doi: 10.1016/j.renene.2013.01.043
- [19] Yu, N., Chen, C., Mahkamov, K., Makhkamova, I., Li, Q., & Ma, J. (2021). Selection and testing of phase change materials in the physical models of buildings for heating and curing of construction elements made of precast concrete. Solar Energy, 226, 309−318. doi: 10.1016/j.solener.2021.08.036
- [20] Prieto, C., Cabeza, L.F., Pavon-Moreno, M.C., & Palomo, E. (2024). Thermal energy storage for direct steam generation concentrating solar power plants: Concept and materials selection. Journal of Energy Storage, 83, 110618. doi: 10.1016/j.est. 2024.110618
- [21] Rao, R.V. (2024). BHARAT: A simple and effective multi-criteria decision-making method that does not need fuzzy logic, Part-1: multi-attribute decision-making applications in the industrial environment. International Journal of Industrial Engineering Computations, 15, 13−40. doi: 10.5267/j.ijiec.2023.12.003
- [22] Rao, R.V. (2024). BHARAT: A simple and effective multi-criteria decision-making method that does not need fuzzy logic, Part-2: role in multi- and many-objective optimization problems. International Journal of Industrial Engineering Computations,15, 1−12. doi :10.5267/j.ijiec.2023.12.004
- [23] Rao, R.V. (2013). Decision Making in the Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision-making Methods. Volume 2. Springer-Verlag, London.doi: 10.1007/978-1-4471-4375-8
Uwagi
[1] The research was supported by the Science and Engineering Research Board (SERB) of the Department of Science and Technology (DST), Government of India, under the Mathematical Research Impact Centric Scheme (MATRICS) with the project number MTR/2023/000071.
[2] Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1434c7a3-3c01-49c1-9ebb-c2bf17a1ae07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.