PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advanced time-frequency representation in voice signal analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most commonly used time-frequency representation of the analysis in voice signal is spectrogram. This representation belongs in general to Cohen’s class, the class of time-frequency energy distributions. From the standpoint of properties of the resolution, spectrogram representation is not optimal. In Cohen class representations are known which have a better resolution properties. All of them are created by smoothing the Wigner-Ville’a distribution characterized by the best resolution, however, the biggest harmful interference. The used smoothing functions decide about a compromise between the properties of resolution and eliminating harmful interference term. Another class of time-frequency energy distributions is the affine class of distributions. From the point of view of readability of analysis of the best properties are known so called Redistribution of energy caused by the use of a general methodology referred to as reassignment to any time-frequency representation. Reassigned distributions efficiently combine a reduction of the interference terms provided by a well adapted smoothing kernel and an increased concentration of the signal components.
Twórcy
autor
  • The State School of Higher Education, The Institute of Technical Sciences and Aviation, 54 Pocztowa Street, 22-100 Chełm, Poland
  • Lublin University of Technology, Mechanical Engineering Faculty, Department of Production Engineering, 36 Nadbystrzycka Street, 20-618 Lublin, Poland
Bibliografia
  • 1. Arjmandi M.,K., Pooyan M. An optimum algorithm in pathological voice quality assessment using wavelet-packet-based features, linear discriminant analysis and support vector machine, Biomedical Signal Processing and Control, 7 (1), 2012, 3–19.
  • 2. Auger F. Representations temps-frequence des signaux nonstationnaires: synthese et contributions. PhD thesis, Ecole Centrale de Nantes, France 1991.
  • 3. Auger F., Flandrin P. Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method. IEEE Transactions on Signal Processing, 43(5), 1995, 1068–89.
  • 4. Auger F., Flandrin P., Goncalves P., Lemoine O. Time-Frequency Toolbox. User Guide, 1995–1996.
  • 5. Behroozmand R., Almasganj F. Optimal selection of wavelet-packet based features using genetic algorithm in pathological assessment of patients’ speech signal with unilateral vocal fold paralysis, Computers in Biology and Medicine, 37(4), 2007, 474–485.
  • 6. Bertrand J., Bertrand P. A class of affine Wigner functions with extended covariance properties. J. Math. Phys., 33(7), 1992, 2515–2527.
  • 7. Bertrand J., Bertrand P. Affine time-frequency distributions, Boashash B., Ed., Time-Frequency Signal Analysis – Methods and Applications, Longman Cheshire, Melbourne (Australia), 1992, 118–140.
  • 8. Bertrand J., Bertrand P. Representation des signaux a large bande, La Recherche Aérospatiale, 5, 1985, 277–283.
  • 9. Boudreaux-BAartels G. F. Mixed time-frequency signal transformations, Poularikas A., Ed., The Transforms and Applications Handbook, IEEECRC, Press, Boca Raton, FL,1995, 887–962.
  • 10. Braunschweig T., Thomä R. S., Trautwein U., Wittenberg T. Time-Frequency Analysis of Vocal Fold’s Onset, IEEE Instrumentation and Measurement Technology Conference Ottawa, Canada, 2, 1997, 516–521.
  • 11. Carvalho R.,T.,S., Cavalcante C.,C., Cortez P.,C. Wavelet Transform and Artificial Neural Networks Applied to Voice Disorders Identification, Third World Congress on Nature and Biologically Inspired Computing (NaBIC), 2011, 371–376.
  • 12. Cheng Jun, Liu Feng, Yi Kechu. Time frequency representations for the analysis of speech signals, Conference Paper. TENCON ‘93. Proceedings. Region 10 Conference on Computer, Communication, Control and Power Engineering, IEEE, 1993.
  • 13. Claasent T. A. C. M., Mecklenbrauker W. F. G. The Wigner distribution – A tool for time-frequency analysis. Philips J. Res., 35 (3), 1980, 217–250.
  • 14. Claasent T. A. C. M., Mecklenbrauker W. F. G. The Wigner distribution – A tool for time-frequency analysis. Philips J. Res., 35 (4/5), 1980, 276–300.
  • 15. Claasent T. A. C. M., Mecklenbrauker W. F. G. The Wigner distribution – A tool for time-frequency analysis. Philips J. Res., 35 (6), 1980, 372–389.
  • 16. Cohen L. Generalized phase-space distribution functions. J. Math. Phys., 7, 1966, 781–786.
  • 17. Cohen L. Time-Frequency Analysis, Prentice Hall, Englewoods Cliffs, NJ, 1995.
  • 18. Cohen L. Time-Frequency Distributions – A Review. Proceedings of the IEEE, 77(7), 1989, 941–948.
  • 19. Davies M.E., Daudet L. Sparse audio representations using the MCLT, Signal Processing. 86(3), 2006, 457–470.
  • 20. Dennis J., Tran H. D., Li H. Spectrogram image feature for sound event classification in mismatched conditions., IEEE Signal Processing Letters, 18, (2), 2011, 130–133.
  • 21. Farooq O., Datta S. Phoneme recognition using wavelet based features, Information Sciences, 150(1–2), 2003, 5–15.
  • 22. Flandrin P. Temps-fréquence, Hermes, Paris, 2nd edition, 1998.
  • 23. Flandrin P. Time-Frequency/Time-Scale Analysis, Academic Press, San Diego, CA, 1999.
  • 24. Gardner T. J., Magnasco M. O. Sparse time-frequency representations, PNAS, Proceedings of the National Academy of Sciences of the United States of America. 103(16), 2006, 6094–6099.
  • 25. Ghoraani B., Krishnan S. Time–Frequency Matrix Feature Extraction and Classification of En-vironmental Audio Signals, IEEE Transactions on Audio, Speech, and Language Processing, 19(7), 2011, 2197–2209.
  • 26. Glowacz A. Diagnostics of direct current machine based on analysis of acoustic signals with the use of symlet wavelet transform and modified classifier based on words, Maintenance and Reliability. 16(4), 2014, 554–558.
  • 27. Glowacz A., Glowacz Z. Diagnosis of stator faults of the single-phase induction motor using acoustic signals. Applied Acoustics. 117, 2017, 20–27
  • 28. Glowacz A., Glowacz Z. Recognition of rotor damages in a DC motor using acoustic signals, Bulletin of the Polish Academy of Sciences Technical Sciences, 65(2), 2017, 187–194.
  • 29. Gonalvs P. and Baraniuk R. Pseudo affine wigner distributions and kernel formulation, Submitted to IEEE Transactions on Signal Processing, 1996.
  • 30. Grossmann A., Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal., 15(4), 1984, 723–736.
  • 31. Hibare R., Vibhute A. Feature Extraction Techniques in Speech Processing: A Survey, International Journal of Computer Applications, 107 (5), 2014, 1–8.
  • 32. Hlawatsch F., Auger F. Time-Frequency Analysis, Digital Signal and Image Processing. ISTE Ltd and Wiley & Sons, Inc 2008.
  • 33. Hlawatsch F., Bourdox-Bartels G. F. Linear and quadratic time-frequency signal representations, IEEE Signal Process. Mag., 9(2), 1992, 21–67.
  • 34. Huzaifah M. Comparison of Time-Frequency Representations for Environmental Sound Classification using Convolutional Neural Networks, [Online]. Available: https://arxiv.org/abs/1706.07156.
  • 35. Kern A., Nagy O., Stoop R. Sparse Time-Frequency Analysis of Speech Signals, International Sym-posium on Nonlinear Theory and its Applications (NOLTA2005) Bruges, Belgium, 2005, 545–548.
  • 36. Krolczyk G.M., Nieslony P. Maruda R.W., Wojciechowski S. Dry cutting effect in turning of a duplex stainless steel as a key factor in clean production. Journal of Cleaner Production, 142, 2017, 3343–3354.
  • 37. Markaki M., Stylianou Y. Voice Pathology Detection and Discrimination Based on Modulation Spectral Feature, IEEE Transactions on audio, speech, and language processing, 19(7), 2011, 1938–1948.
  • 38. Mergu Rohini R., Dixit Shantanu K. Multi-Resolution Speech Spectrogram, International Journal of Computer Applications, 15 (4), 2011, 28–32.
  • 39. Nieslony P., Krolczyk G.M., Wojciechowski S., Chudy R., Zak K., Maruda R.W. Surface quality and topographic inspection of variable compliance part after precise turning, Applied Surface Science, 434, 2018, 91–101.
  • 40. Nieslony P., Krolczyk G.M., Zak K., Maruda R.W., Legutko S. Comparative assessment of the mechanical and electromagnetic surfaces of explosively clad Ti–steel plates after drilling process. Precision Engineering, 47, 2017, 104–110.
  • 41. Parraga A. Application of wavelet packet transform in the analysis and classification of pathological signs and voices, Master’s thesis, Federal University of Rio Grande do Sul, Brazil, School of Engineering, 2002.
  • 42. Rioul O., Flandrin P. Time-scale distributions: A general class extending wavelet transform. IEEE Trans. Signal Process., 40(7), 1992, 1746–1757.
  • 43. Saenz-Lechon N., Godino-Llorente J. I., Osma- Ruiz V., Gómez-Vilda P. Methodological issues in the development of automatic systems for voice pathology detection, Biomedical Signal Processing and Control, 1(2), 2006, 120–128.
  • 44. Trivedi N., Kumar V., Singh S., Ahuja S., Chadha R. Speech Recognition by Wavelet Analysis, Inter-national Journal of Computer Applications, 15(8), 2011, 27–32.
  • 45. Umapathy K., Krishnan S., Parsa V., Jamieson D. G. Discrimination of pathological voices using time-frequency approach, IEEE Trans. Biomed. Eng., 52(3), 2005, 421–430.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1434c6e6-47b0-4d80-a1dc-7151013ab2a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.